Designing an Autonomous Service Robot

Ioannis Havoutis, Lars Kunze

3rd Year Design Project

Synopsis

Service Robotics is one of the most actively researched technologies of today, starting to reach every-day urban, industrial, natural and domestic environments.

With <u>no established core tech</u>, <u>no standard processing</u> <u>pipeline</u> and <u>no killer app</u>, the research is wide open to anyone curious enough to tackle it.

The Challenge

Design all aspects of an **Autonomous Service Robot**.

- Hardware
- Software
- Ecosystem

Open ended problem in Engineering Design

Domains, features, targets, etc.,

- Useful
- Interesting
- Cost-effective
- Possible

This Year's Theme

• Domestic Robotics

The Project

- Select an application domain and design all aspects of an Autonomous Service Robot and ecosystem.
 - Hardware:
 - Robot arms, legs, actuators, transmissions, sensors, ...
 - External tracking cameras, controllers, ...
 - Software:
 - Robot: SLAM, path planning, motion generation, missions, ...
 - External: command & control, Cloud compute, ...

Organization

- Log-books (10 marks)
 - Record everything that you do or think about for the project.
- Group work (10 marks)
 - Overall standard of performance for the whole team.
- Final Presentation (20 marks)
 - Coordinated presentation, typically 5' for each student, followed by Q&A.
- Final report (60 marks)
 - Collaborative, but individual parts clearly marked.

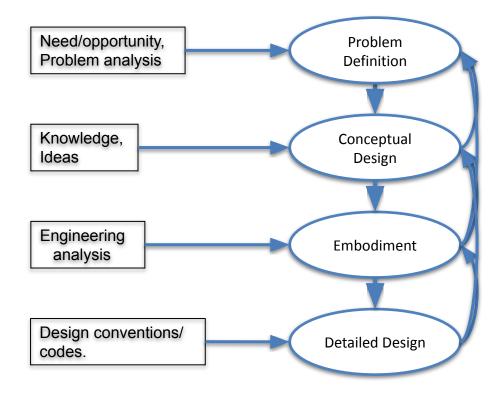
Remarks

Do not underestimate the workload required for the 3YP. A **consistent work pattern** through the two terms and during the write-up stage is essential.

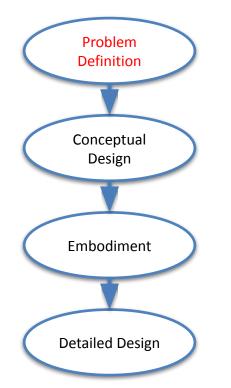
The 3rd year project is worth **1 Examination Unit** out of 5.5 Examination Units for the year. It should therefore take up a commensurate amount of time during your year.

Calendar

	Michaelmas Term		
Week 1	Groups	Intro (now), Guest Lecture (Dr. Dimitrios Kanoulas - UCL)	
Week 2		Guest Lecture (Dr. Gaya Kazhoyan - U. Bremen), One-slide concepts	
Week 3		Talks (1, 5, 9, 13) - Pitch, Guest Lecture (Dr. Christian Dondrup - HW)	
Week 4	Log Books	Talks (2, 6, 10, 14) - Device Hardware	
Week 5		Progress	
Week 6		Talks (3, 7, 11, 15) - Device Software	
Week 7	Log-books	Talks (4, 8, 12, 16) - External hardware + software	
Week 8			


Calendar

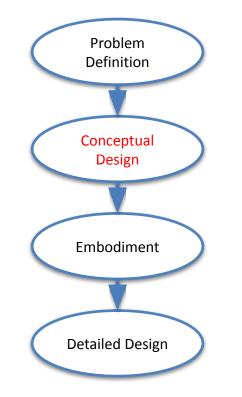
	Hilary Term			
Week 1		Challenge problem brief		
Week 2	Log Books	Guest Lecture ()		
Week 3		Challenge Problem Progress Talks (1, 5, 9, 13)		
Week 4		Challenge Problem Progress Talks (2, 6, 10, 14)		
Week 5		Challenge Problem Progress Talks (3, 7, 11, 15)		
Week 6		Challenge Problem Progress Talks (4, 8, 12, 16)		
Week 7	Log Books	Guest Lecture		
Week 8		Practice Final Presentation		


Calendar

	Trinity Term	
Week 0		Draft of report
Week 1		A possible date for final presentation. (to be scheduled)
Week 2		A possible date for final presentation. (to be scheduled)
Week 4		Reports

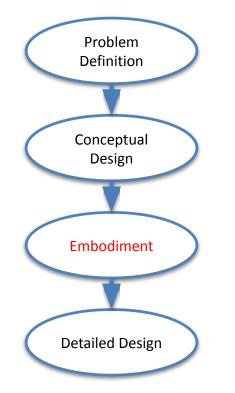
Engineering Design

Engineering Design


You'll have to do this in the next 2 weeks!

You'll have to produce a **design brief (slides)**, i.e. a plan that identifies a problem, its criteria, and its constraints.

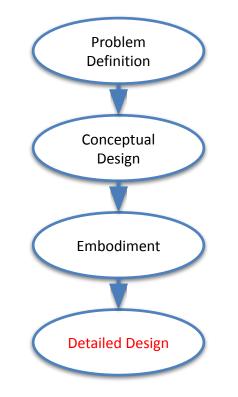
00


Conceptual Design

- Establish criteria, i.e. the **functional** requirements (FRs).
- Come up with ideas/solutions.
- Combine ideas to get **concept solutions**.
- You may want to use a **decision matrix**.

	Ideas			
FR	ldea 1	ldea 2	ldea 3	ldea 4
Big FoV	3	2	1	3
Interactio	1	1	1	3
Cheap	4	5	1	3

Embodiment Design



Typically this may involve:

- Analysis and optimisation of individual components
- Modelling/analysing of connections between components
- Modelling of entire system
- Modification of components to optimise system

Next you'd build a prototype, which you'd have to evaluate. We won't 🙁.

Embodiment Design

Hardware:

- Specify the exact components and materials.
- Specify all the dimensions.
- Specify production route.
- Estimate production costs.

Software:

- Specify overall architecture.
- Specify algorithmic implementation for the individual components.
- Estimate processing/memory requirements.

Produce full documentation.

For the 3YP, full detail design is not normally needed, though an **economic analysis** is desirable.

Team and Project Management

You will learn how to:

- Make design and economic **decisions**.
 - **Selecting** among several, possibly conflicting, design possibilities.
- **Organise** project team meetings and **allocate** work packages.
 - Outside of the weekly timetabled sessions, **organize** and **divide up** the tasks.
- Manage project documents and <u>keep records of your work</u>.
 - **Collaborate** in writing and editing reports and presentations.

Support

We will provide notes and advice on developing ideas around robotics technologies such as:

- Actuation and Control
- Sensing and Navigation
- Localization and Mapping
- Path and Motion Planning

More details

Starting from a design brief you should learn how to

- Make design and economic decisions
 - Selecting among several, possibly conflicting, design possibilities
- Organise project team meetings and allocate work packages
 - Outside of the weekly timetabled sessions, organize and divide up the tasks
- Manage project documents and keep records of your work
 - Collaborate in writing and editing reports and presentations

Final Result

The 'deliverable' is a **technical report** and **presentation** describing the detailed design, its rationale and costings.

Other Info

• Project website:

https://ihavoutis.github.io/teaching/3YP_ASR/index.html

That's all! - Questions?