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Abstract— Robotic locomotion is often approached with the
goal of maximizing robustness and reactivity by increasing
motion control frequency. We challenge this intuitive notion
by demonstrating robust and dynamic locomotion with a
learned motion controller executing at as low as 8 Hz on a
real ANYmal C quadruped. The robot is able to robustly and
repeatably achieve a high heading velocity of 1.5 ms−1, traverse
uneven terrain, and resist unexpected external perturbations.
We further present a comparative analysis of deep reinforce-
ment learning (RL) based motion control policies trained and
executed at frequencies ranging from 5 Hz to 200 Hz. We
show that low-frequency policies are less sensitive to actuation
latencies and variations in system dynamics. This is to the extent
that a successful sim-to-real transfer can be performed even
without any dynamics randomization or actuation modeling.
We support this claim through a set of rigorous empirical
evaluations. Moreover, to assist reproducibility, we provide the
training and deployment code along with an extended analysis
at https://ori-drs.github.io/lfmc/.

I. INTRODUCTION

Legged systems can execute agile motions by leveraging
their ability to reach appropriate and disjoint support con-
tacts, thereby enabling outstanding mobility in complex and
unstructured environments. This, however, requires control
solutions that are able to recover from unexpected perturba-
tions, adapt to variations in system and environment dynam-
ics, and execute safe and reliable locomotion. For feedback-
based control systems, taking a corrective control action as
soon as a sensory signal is detected allows for minimizing
motion tracking errors while offering high reactivity to ad-
dress external disturbances and modeling inaccuracies. This
design motivation has been employed for achieving dynamic
locomotion behaviors in [1], [2], [3] through generation of
low-level actuation commands at frequencies ranging from
400 Hz to 1 kHz.

In contrast, animals are able to demonstrate remarkably
agile locomotion in spite of sensory noise [4] and consid-
erable sensorimotor latencies [5] associated with nerve con-
duction, electro-mechanical, and force generation delays [6]
which limits their motion control frequency. The sensing and
actuation delays for a medium-sized 20 kg dog, for example,
can be approximately 58 ms of which 23.2 ms are required
to process sensory feedback, generate an actuation signal,
and deliver electro-mechanical commands [7]. The remaining
delay corresponds to the ramp-up time for achieving peak
muscle force. For a 40 kg animal, the total delay is estimated
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Fig. 1. ANYmal C quadruped walking over uneven terrain with a perceptive
reinforcement learning policy executed at a frequency of 8 Hz. Accompa-
nying video can be found at https://youtu.be/pSuX223zLvM

to be 67 ms with processing, generation and delivery latency
of 30.4 ms.

In [8], Ashtiani et al. present an example in which a house
cat exhibiting a locomotion frequency of 5 Hz [9] is sensor-
blind for half its stance-phase. This duration corresponds to
the entirety of the muscle force ramp-up time suggesting that
high-frequency feedback-based decision-making may not be
critical for locomotion over challenging terrains. Ashtiani
et al. investigate this discrepancy between biological and
mechanical systems and propose a parallel compliant joint
system along with a leg-length controller to realize actuation
response similar to that of animal muscle-tendon units. This
is based on the motivation that elastic actuation allows for
self-stability [10].

In this regard, the ANYmal C quadruped [11] houses
series elastic actuators (SEAs) that offer high compliance
making the system robust to impacts. SEAs, however, trade-
off controllability for compliance [12]. In comparison, quasi-
direct drives offer better actuation command tracking perfor-
mance with lower control latencies enabling highly dynamic
locomotion [13]. This makes it possible for the Mini Cheetah
to sprint at 3.74 ms−1 [14] while for the ANYmal C, Miki et
al. reported heading and lateral velocities of up to 1.2 ms−1

even with an extremely robust locomotion controller [15].
This work explores and presents our findings, alluding to

a bio-inspired control design choice: if animals can perform
robust and dynamic locomotion at low motion control fre-
quencies, can robots do so too?

For this, we develop blind and perceptive control strategies
for the ANYmal C quadruped and evaluate its performance
for robust and dynamic locomotion over flat and uneven
terrain as shown in Fig. 1.

A. Related Work

Model-free data-driven deep reinforcement learning (RL)
enables obtaining control solutions that have the potential to



thoroughly utilize the system capabilities of current robots.
This property has been leveraged for learning agile and
dynamic robotic locomotion skills to perform blind bipedal
traversal over stairs [16], quadrupedal locomotion over chal-
lenging terrains [17] and even robust quadrupedal state
recovery [18]. Model-based techniques have also demon-
strated dynamic and complex locomotion [19], [20], [21]. A
combination of model-based and model-free methods have
also been proposed [22], [23], [24], [25]. These approaches,
however, often employ finite-order motion parameterization
which inhibits the discovery of optimal behaviors. In con-
trast, motions executed by RL policies that map robot state
information to desired joint states are not constrained by
motion primitives. This makes RL particularly suitable for
our task of obtaining motion control policies operating at
frequencies as low as 5 Hz. In such a case, the optimal
behavior is not bounded by carefully tuned model-based
controllers. Instead, the objective of finding the appropriate
style to achieve dynamic and stable locomotion is addressed
by the RL agent.

Despite the significant progress in RL for robotic locomo-
tion, there remains an inconsistency in the design motivations
for much of the proposed control architectures. In [26],
Hwangbo et al. train an RL locomotion policy to map robot
states to desired joint positions. This policy is queried at
200 Hz and the authors especially note that introducing a
history of joint states into the RL state space is essential
to obtain a locomotion policy. Rudin et al., however, train
a locomotion policy at 50 Hz without utilizing joint state
history [27]. The obtained policy is transferable to the real
platform even with access to only the current proprioceptive
state. In [28], Duan et al. also show bipedal locomotion
at 40 Hz without utilizing joint state history. We study
these differences and observe that at higher motion control
frequencies, the controller is more sensitive to the actuation
dynamics compared to at lower-frequencies. In the context
of this work, low-frequency refers to 25 Hz or less. For a
swing and stance phase duration of approximately 600 ms
during locomotion, this corresponds to 15 or less control
set points generated during each of these phases. We also
observed that at less than 5 Hz, corresponding to less than
3 set points generated during swing phase, the controller is
unable to maintain stability during locomotion. We detail
upon our findings in Section IV of this manuscript.

It is also worth mentioning that a rich body of work
focuses on bio-inspired mechanical designs [29], [30], [31].
Although this is beyond the scope of our current work, we
believe it serves as an important reminder that control intel-
ligence and mechanical design complement each other [32].

B. Contribution

Our main contribution with this work is presenting that
low-frequency motion control is sufficient to perform robust
and dynamic locomotion. We further show that dynamics
randomization or actuation modeling may not even be nec-
essary for successful sim-to-real transfer. We additionally
provide a comparative analysis of motion control policies

Fig. 2. Control architecture of our proprioceptive locomotion framework
comprising a motion controller and an actuation tracker.

trained and deployed at a range of frequencies. We believe
this work will provide an important reference to the robotic
control research community with regards to design motiva-
tions for developing custom control solutions.

We additionally highlight our contributions relating
to sharing of training and deployment code, the low-
frequency motion control (LFMC) framework. We provide
a RaiSim [33] based optimized implementation for training
locomotion policies for ANYmal C at various motion control
frequencies. This allows users to train policies in less than
thirty minutes on a standard computer without requiring
expensive hardware for massive parallelization [27]. We
additionally provide minimal deployment code in both C++
and Python. For the Python version, we also provide an
option to choose between the RaiSim and PyBullet [34] sim-
ulation engines. We hope this encourages reproducibility and
allows colleagues to easily perform benchmarking against
our approach.

II. PRELIMINARIES

A. System Model

We model a quadrupedal robot as a floating base B
with four attached limbs. The robot state is measured and
expressed in a global reference frame where the position
is written as rB ∈ R3. The orientation is represented as
the rotation matrix RB ∈ SO(3). Each limb comprises three
rotational joints. The angular joint positions are denoted by
the vector q j ∈ R12. The linear and angular base velocities
are represented as vB ∈ R3 and ωB ∈ R3 respectively.

The joint control torques τττ j ∈R12 actuate the quadrupedal
system and are computed using the impedance control model,

τττ j = kp∆q j − kd q̇ j. (1)

Here, kp and kd represent tracking gains and ∆q j = q∗
j −q j

where q∗
j denotes the desired joint positions.

B. Control Architecture

Our control architecture comprises a high-level motion
controller and a low-level actuation tracker. This design is
motivated by prior works on RL for robotic locomotion [26],
[35], [36]. The motion controller, executed at a deployment
frequency fm, processes robot state information to generate
desired joint states. The actuation tracker, executed at a



frequency fa where fa ≥ fm, tracks these desired joint states
by generating τττ j using the model described in Eq. 1.

We model the motion controller policy as a multi-layer
perceptron (MLP), πθ . Here, θ represents the network pa-
rameters. The policy, πθ : s 7→ a, maps the input state tuple
s to actions a ∈ R12. The tuple s comprises observations
that can be accessed on the real robot. Since we perform
comparative analysis of different types of policies, the di-
mensionality of s depends on the individual motion control
policy. We discuss this in the following subsection.

Each of the policies outputs an action tuple, a := ⟨q∗
j⟩,

representing the desired joint positions and is based on the
motivation that low-impedance joint position control can
offer improved training and control performance over torque
control [37].

C. Motion Control Policies

We represent the motion control policies as πθ where θ

denotes the parameters of a generic motion controller. To
refer to specific policies, we introduce the notation

π
ft

M:H

where ft is the motion control frequency at which the policy
was trained, M is the mode of operation which can either
be b (for blind) or p (for perceptive), and H ∈ R represents
history length of joint states introduced in the state tuple s.
The joint state history is recorded at a frequency of f j with
a corresponding time step t j. In this work, the joint state
recording frequency f j ≥ fm. We use f j = 200Hz which we
obtained empirically as part of [24].

As an example, π8
b:2 represents a blind motion control

policy trained at 8 Hz. The state space of π8
b:2 also contains q j

and q̇ j at joint recording steps t j−1 and t j−2, corresponding
to a history length of 2.

For brevity, we omit ft while referring to a class of motion
control policies with the same operation mode and history
length. For blind policies, πb:0, with no joint state history,
the state tuple sb:0 ∈ R48 is defined as

sb:0 := ⟨RT
Bez,q j,RT

BvB,RT
BωB, q̇ j,∆q j,c∗⟩,

where ez = [0,0,1]T represents the vertical z-axis and c∗ ∈
R3 comprises the desired heading velocity, lateral velocity
and yaw rate commands represented in the base frame. The
objective of the motion control policies is thus to track user-
generated desired velocity commands.

The state space of perceptive policies πp:0 is written as
sp:0 ∈ R235. sp:0 augments sb:0 with robo-centric terrain in-
formation T ∈ R17×11 observed between [−0.8,0.8]m along
the heading axis and [−0.5,0.5]m along the lateral axis with
a resolution of 0.1 m. The perceptive state space design is
based on [27].

The joint state history augments the state space dimen-
sionality by H × 24. For a blind policy with history length
of 4, πb:4, its state tuple sb:4 ∈ R144 is written as

sb:4 := ⟨sb:0,qt j−1,qt j−2,qt j−3,qt j−4⟩.

Here, qt j represents the joint state tuple comprising joint
positions and joint velocities recorded at time step t j. The
control architecture, including the dense neural network
policy architecture, is illustrated in Fig. 2.

III. METHODOLOGY

A. Training

We represent our problem as a sequential Markov decision
process (MDP) [38] with the goal of obtaining a policy, or
a class of policies, that maximizes the expected cumulative
discounted return,

J (π) .
= E

T ∼πθ

[
N

∑
t=0

γ
tR

]
, (2)

where γ ∈ [0,1) represents the discount factor and T ,
dependent on πθ , denotes a finite-horizon trajectory with
episode length N. Our reward function, R, comprises several
reward terms that allow for efficient and stable tracking of
reference base velocity commands. We use the proximal
policy optimization (PPO) [39] strategy to train each of
our policies. Our training approach, including the reward
function, has been derived from prior works [26], [35], [27].

While our method is quite standard, training several poli-
cies for different motion control frequencies requires tuning
of individual reward terms and hyperparameters such as
γ . For example, for an episodic length of 1 s, executing a
policy at 200 Hz would imply collection of forty times more
samples than for a 5 Hz policy. Additionally, the half-life of
γ can be given by,

nγ0.5 =
log0.5
logγ

≈ −0.3
logγ

. (3)

For γ = 0.98, the half-life would correspond to 34 control
steps. For a 200 Hz policy, this is equivalent to 0.17 s while
for a 5 Hz policy, this represents a duration of 6.8 s.

To ensure consistency across different training frequencies,
we denote the duration of nγ0.5 in seconds as opposed to
control steps. For a training frequency ft , the discount factor
can then be computed by

γ = exp
(

log0.5
ft ×nγ0.5

)
. (4)

In our training setup, we use nγ0.5 = 3s. For an episodic
length N = 1s, we ensure the batch size per policy iteration
remains the same for every control frequency. For this,
we perform parallel data collection wherein the number of
parallel environments are scaled up to fit the desired batch
size, bs = ft × nenv. For bs = 48k, we use nenv = 240 for
ft = 200Hz, and nenv = 9600 for ft = 5Hz.

To avoid retuning the reward function, we compute and
aggregate the returns at each simulation step, ts as opposed
to each control step tm. Normally, ts ≤ tm and we use
ts = 0.0025s in this work. While this largely addresses
exhaustive reward function tuning, we observed that reward
terms representing deviation from nominal joint configura-
tion and action smoothness needed to be slightly tuned for
individual frequencies to achieve visually similar locomotion



Fig. 3. Average returns for each of the trained policies πb:0.

behavior. We provide the different training configurations on
the project website1.

We train each of the πb:0 policies for 20 k iterations. The
iteration time is dependent on ft and varies between 0.4 s
(for ft = 25Hz and ft = 50Hz) to 1.5 s (for ft = 5Hz and
ft = 200Hz). on a standard desktop computer housing an
8-core 3.6 GHz Intel i9-9900K and an Nvidia RTX 2080Ti.
The returns plot for each of the trained policies is shown
in Fig. 3. The policies trained at low-frequencies (8 Hz,
10 Hz and 25 Hz) converge a lot faster (<10k iterations)
compared to high-frequency policies. Note, π5

b:0 suffers from
poor reactivity and is therefore harder to train.

We do not perform any dynamics randomization (DR)
while training the blind policies. Although we do use an
actuator network [26] to model the real actuation dynamics,
in Section IV, we show that introducing the actuator network
during training may not even be necessary for LFMC.

B. Evaluation

We follow the narrative of bio-inspired low-frequency
motion control (LFMC) and discuss the following key ob-
servations and reasoning in Section IV.

• LFMC policies are less sensitive to actuation dynamics
under the assumption that actuation settling time [40] is
less than control step time (Section IV-A).

• LFMC policies do not perform implicit modeling of
system dynamics necessary for predictive control at
high frequencies. Instead, LFMC policies can operate
as motion planners (Section IV-B). To support this, we
visualize the policy network Jacobians in Fig. 7.

• Since LFMC policies operate as motion planners, they
show more robustness to variations in system dynamics.
This is based on the assumption that the low-level
actuation tracker stably and reliably tracks the motion
plans. We show this to be the case in Fig. 9.

• LFMC policies are faster to train (Fig. 3).
To support these points, we evaluate the performance of

each of the individual blind πb:0 policies in RaiSim with
unstructured rough terrain generated using Perlin noise [41]
with maximum extrusion of 0.15 m. This is shown in Fig. 4.
Our motivation for this setup is twofold: (1) the terrain noise
introduces randomness allowing us to measure a probability
distribution and (2) the unexpected perturbations highlight
the reactivity of each of the policies.

1https://ori-drs.github.io/lfmc

Fig. 4. RaiSim simulation set up for evaluation of blind and perceptive
locomotion policies with ANYmal C traversing terrains comprising unstruc-
tured ground, stairs and bricks.

We introduce success rate (SR) as a performance metric
defined as,

SR = 1− Ne

NT
(5)

where Ne refers to the number of episodic rollouts that
were terminated early due to an invalid robot state and NT
represents the total number of rollouts. In this work, we use
NT = 100. For each rollout, we randomize the base heading
direction. This randomization occurs with the same seed
across each of the policies. An invalid robot state is defined
by the criteria: (1) arccos(RB3,3)> 0.4π which relates to base
orientation, (2) self-collisions, or (3) collision of the robot
base with ground.

We train and compare π10
b:4 and π200

b:4 to show that joint
state history is relevant for modeling system dynamics and
is essential for high-frequency motion control as presented
in [26]. This, however, is not the case for LFMC. We also
evaluate the performance of perceptive locomotion policies
on terrains comprising rough ground, stairs and bricks as
shown in Fig. 4. Our evaluation method for perceptive
locomotion policies is based on the setup introduced in [24].

IV. RESULTS

This section presents the key results in support of our
contribution. We provide an extended analysis on the project
website. The project website also contains qualitative demon-
strations of 8 Hz motion control in non-stationary environ-
ments such as unexpected slippery surfaces.

A. Intuitive Reasoning

Figure 5 (top) illustrates a toy example of a 1 DoF PD
controller tracking sinusoidal set points updated at 5 Hz and
200 Hz for kp ∈ {50,65,80,95} and kd = 2. For the 5 Hz
update frequency, the joint trajectories converge to very
similar states before a new set point is generated. Note that,
we use kp = 80 and kd = 2.0 for deploying our policies
on to the real robot. For a 5 Hz controller, this implies the
sensory readings at each update step are less effected by
actuation tracking dynamics in comparison for higher update
frequencies such as 200 Hz. This implies that, for an effective
control behavior, the 200 Hz policy requires observability of
the actuation dynamics.

We hypothesize that LFMC allows for operation as a
planner and refer to it as motion planning hypothesis. In
this context, motion planning refers to generation of target
states without an adaptive tracking system as is common in
optimization-based approaches [2] which utilize a planner



Fig. 5. Top: Tracking of sinusoidal set points updated at 5 Hz and 200 Hz
for various position tracking gains. Bottom: Step responses observed for
kp ∈ {60,100} and kd ∈ {0,2} for a series elastic actuator present on the
ANYmal C quadruped.

Fig. 6. Gait sequences for various πb:0 motion control policies. The
coloured regions represent stance phase.

in addition to a whole-body controller. This makes low-
frequency motion controllers robust to actuation dynamics
under the assumption that the low-level actuation controller
stably tracks the generated joint states. Figure 5 (bottom)
illustrates why the stable tracking is necessary. For cases
of under or over-damping, the motion controller may be
required to adapt to the settling state even with low-frequency
control.

B. Qualitative and Behavioral Analysis

We test the motion planning hypothesis by transferring
the trained motion control policies on to the real ANYmal
C quadruped. We observe extremely aggressive actuation
tracking for π200

b:0 resulting in vibrations at the rotary joints.
This aggressive behavior is reduced with lower-frequency
policies and no vibrations are recorded for π25

b:0 and lower.
We suspect that, since no dynamics randomization (DR) was
performed during training, and due to imperfect actuation
modeling, high-frequency policies overfit to the simulation
domain affecting sim-to-real transfer. Note, while we are able
to transfer π5

b:0 onto the real robot, we are only able to stably
execute low-velocity motions. The 5 Hz policy suffers from
poor reactivity and is unable to execute recovery actions in
unstable states.

We observe interesting behavior with regards to the stance
(foot-in-contact) and swing (foot-not-in-contact) phase dura-

Fig. 7. Visualization of the mean of network Jacobians recorded for π10
b:4

and π200
b:4 for 2 s. Dark blue regions correspond to high gradients whereas

white corresponds to zero gradients. The brown regions separate different
observations and have only been included for visual aid. Note that, joint
state history is sampled at 200 Hz for both the policies. Sampling joint state
history at 10 Hz for π10

b:4 resulted in near-zero gradients for history terms.

tion. Low-frequency policies exhibit larger stance and swing
phases compared to high-frequency policies (Fig. 6). We
expected this to be an artifact of the scaling of action
smoothness reward term (which penalizes large deviations
between current and previous actions) with variations in
motion control training frequencies. This, however, was not
the case when we introduced joint state history (N ≥ 4)
into the state space. Hwangbo et al. hypothesized that the
joint state history implicitly modeled contact detection [26].
While this has been consistent with our analysis of observing
the absolute of policy Jacobians, |dπθ (s)/ds|, as presented
in [17], we also observed that high-frequency control policies
are more dependent on joint state history than low-frequency
policies. We posit that joint state history improves the domain
observability through implicit encoding of actuation dynam-
ics [42] and is therefore more relevant for high-frequency
policies.

We further investigate this for π10
b:4 and π200

b:4 . Figure 7
illustrates the mean of the policy Jacobians recorded for a
duration of 2 s. Dark blue regions suggest higher gradients,
implying larger dependency. Compared to 10 Hz, the 200 Hz
policy requires more observations to execute the same task
relating to larger dependency on system dynamics. Interest-
ingly, the gradients for joint velocities are quite low for π10

b:4
while π200

b:4 utilizes joint velocities more than joint positions.
The gradients observed along the base velocity states were
also negligible for 10 Hz policy, compared to 200 Hz, even
during high-speed locomotion suggesting that LFMC policies
do not considerably rely on base-velocity measurements.

For high-frequency πb:0, we suspect the fast contact
switching behavior occurs due to partial observability of
the system dynamics. In our experience, we have observed
this to be the case for poorly designed state spaces. This,
however, needs further investigating. For the 200 Hz policy,
the increase in stance and swing phase duration, compared



Fig. 8. Motion control policy trained and deployed at 8 Hz stably tracking heading base velocity of 1.5 ms−1.

Fig. 9. Success rate observed for various motion control policies, πb:0, for
different perturbations and dynamics parameters.

to 100 Hz policy, is due to poor tracking with lower stability.

C. Robustness Analysis

One of our main objectives with this work is to demon-
strate robustness with low-frequency motion control. Fig-
ure 9 shows that π10

b:0 performs better than most of the
policies. π25

b:0 offers both high robustness and reactivity
whereas π8

b:0 falls behind π10
b:0 due to inadequate reactivity for

traversal over rough terrain. We also investigate robustness
to actuation latencies and show that LFMC policies offer
higher robustness than high-frequency policies (Table I).

TABLE I
MAXIMUM ACTUATION DELAY THAT πb:0 POLICIES CAN BE ROBUST TO

RIGHT BEFORE FAILURE MEASURED AT A RESOLUTION OF 5 ms.

Training Frequency (Hz) 5 10 25 50 100 200
Latency (ms) 90 90 65 50 30 20

D. Dynamic Locomotion

We perform qualitative evaluation on the real robot and
demonstrate high-speed dynamic locomotion with π8

b:0. As
shown in Fig. 8, we are able to achieve a heading velocity
of approximately 1.5 ms−1 traversing a distance of 2 m in
roughly 1.33 s.

We also train a perceptive locomotion policy π8
p:0 based

on [27]. We show that 8 Hz motion control is sufficient for
robust traversal over considerable obstacles (wooden railway
sleepers) and steps (both up and down) as presented in Fig. 1.

We further compare the behavior of policies trained with
and without DR. The DR parameters are based on [35] and
have been provided on the project website. This is shown
for 10 Hz and 200 Hz perceptive policies in Table II. As
expected, DR allows for better performance over uneven
terrain. Introduction of joint state history is not as effective as
doing both, introducing joint state history and DR. Joint state
history and DR allow for better observability of environment
interactions, necessary for uneven terrains [17], while also
encouraging generalizability to unseen domains.

We are also able to demonstrate transfer on to the physical
system with policies trained without the actuator network.
The behavior is stable, however, not as smooth as policies
trained with the actuator network. We detail upon the ex-
tended analysis on the project website and summarize our
evaluation in the overview video.

TABLE II
SUCCESS RATES OF 10 Hz AND 200 Hz PERCEPTIVE POLICIES MEASURED

FOR 100 RUNS EACH.
10 Hz 200 Hz

πp:0 πp:0 (DR) πp:4 πp:4 (DR) πp:0 πp:0 (DR) πp:4 πp:4 (DR)
Rough 0.94 0.94 0.94 0.95 0.87 0.92 0.93 0.94
Stairs 0.86 0.93 0.92 0.94 0.52 0.59 0.88 0.95
Bricks 0.66 0.71 0.69 0.80 0.58 0.62 0.64 0.76

V. CONCLUSION

This work aims to start the discussion within the robotics
community about the role and benefit of high- versus low-
frequency motion control, especially within the context of
learning-based approaches. From biological studies we know
that animals can perform robust and dynamic locomotion
at low motion control frequencies and, with this work, we
showed how real robots can achieve this too.

We demonstrated dynamic and robust quadrupedal loco-
motion with as low as 8 Hz of motion control frequency. We
further provided empirical evaluations to support our claim
that motion control policies trained at low-frequencies do
not require dynamics randomization or actuation modeling
to perform a successful sim-to-real transfer.
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