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Where Should I Look? Optimised Gaze Control for

Whole-Body Collision Avoidance in Dynamic

Environments
Mark Nicholas Finean1, Wolfgang Merkt1, and Ioannis Havoutis1

AbstractÐAs robots operate in increasingly complex and
dynamic environments, fast motion re-planning has become a
widely explored area of research. In a real-world deployment, we
often lack the ability to fully observe the environment at all times,
giving rise to the challenge of determining how to best perceive
the environment given a continuously updated motion plan. We
provide the first investigation into a ‘smart’ controller for gaze
control with the objective of providing effective perception of the
environment for obstacle avoidance and motion planning in dy-
namic and unknown environments. We detail the novel problem
of determining the best head camera behaviour for mobile robots
when constrained by a trajectory. Furthermore, we propose a
greedy optimisation-based solution that uses a combination of
voxelised rewards and motion primitives. We demonstrate that
our method outperforms the benchmark methods in 2D and 3D
environments, in respect of both the ability to explore the local
surroundings, as well as in a superior success rate of finding
collision-free trajectories ± our method is shown to provide 7.4x
better map exploration while consistently achieving a higher
success rate for generating collision-free trajectories. We verify
our findings on a physical Toyota Human Support Robot (HSR)
using a GPU-accelerated perception framework.

Index TermsÐMobile Manipulation, RGB-D Perception, Col-
lision Avoidance

I. INTRODUCTION

FAST re-planning, especially for robots operating in dy-

namic environments, is a challenging and active research

area [1]±[5]. The vast majority of this prior work focuses

on instances with a fixed camera, whether external or robot-

mounted. While limited in the ‘field-of-view’, or number

of sensors, many mobile robots such as the Toyota Human

Support Robot (HSR), or humanoid robots, have movable

cameras or sensor heads; this presents the unique challenge

of determining where the camera should be looking as the

robot moves in real-world environments.

In our previous research [6], we proposed and demonstrated

an integrated perception and motion planning pipeline. We

found that collisions and failure cases of the framework
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Fig. 1. Using our method of active gaze control, a Toyota Human Support
Robot successfully avoided dynamic obstacles to achieve a goal state (green)
from which to pick up a bottle. During execution, a human moved the leftmost
large black case into the path of the planned robot trajectory ± the direction
of motion is shown with an arrow (cyan). Our optimised gaze control enabled
the head-mounted camera to perceive the changes in the environment; the
re-planning framework safely and continuously re-planned and executed the
task.

primarily occurred due to poor positioning of the head camera

during trajectory execution and re-planning Ð in other words,

the ability of any motion planner to provide collision-free

trajectories is limited by the effectiveness of the perception

system in continuously updating the environment representa-

tion and identifying obstacles. Robots such as the HSR have

additional degrees of freedom, such as pan and tilt, to control

the position of the head-mounted camera. We found that

simple behavioural heuristics for the camera, such as a fixed

camera pose or continuous panning, provided unsatisfactory

results and merited further investigation. To our knowledge,

this work provides the first investigation into active gaze

control for motion planning when constrained by a trajectory.

We propose a greedy, voxelised cost-based optimisation as

an effective solution and show that our method outperforms

heuristic approaches. Further verification of our approach is

conducted on a physical HSR.
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Fig. 2. At any snapshot in time during a motion planning task, the robot
will have partially observed the environment and planned a trajectory accord-
ingly. The problem that we address is in determining where a movable/re-
positionable, e.g. head-mounted, camera should be directed in order to provide
the most relevant observations for effective collision avoidance and optimised
map exploration.

A. Problem Statement

We address the problem of ªgiven a planned robot trajectory,

where should the camera be directed in order to provide

both successful collision avoidance and map exploration in

potentially dynamic scenes?º Figure 2 illustrates the problem.

The challenge largely arises because once we start working

within the paradigm of dynamic and unknown environments,

we must take a more cautious view of our surroundings ±

there is no guarantee that an area that was observed in the

past will remain static. In particular, for robots operating in

environments where humans co-occupy the workspace, there

may be the possibility of a human crossing the planned path

of the robot; the robot should thus perceive areas of space

that it plans to occupy in plenty of time to react to dynamic

obstacles.

II. RELATED WORK

Literature on robot camera positioning typically aims to

address the ‘Next-Best View’ (NBV) problem whereby the

aim is to determine where the camera should be positioned to

obtain maximum information gain for the reconstruction of an

environment or object model [7]±[11].

Our problem is subtly different for two reasons. Firstly,

in our problem, the camera trajectory is constrained by the

planned trajectory of the mobile manipulator on which it is

mounted. Secondly, we do not wish to maximise the obser-

vance or information gain of an object, or the environment,

as in the NBV problem; this in itself does not necessarily

assist collision avoidance. Instead, our goal is to optimise our

perception of the environment such that we achieve resultant

trajectories that are collision-free for a given task. In other

words, we want our observations of the environment to be

relevant to the task and planned robot trajectory.

We believe that the concept of ‘trajectory-constrained active

gaze control’ is a novel problem that has not previously been

addressed. A simple approach is to use a fixed head position

without any active gaze control. Maier et. al. present and

demonstrate an integrated approach for localisation, mapping,

and planning in 3D environments using RGB-D cameras

[12]. Using a NAO humanoid robot, they fix the position

of the head-mounted depth camera so that the optical axis

intersects the floor at a 30° angle. The authors found this to

be ªthe best compromise between observing the near range

for obstacle detection and looking ahead for localization and

path planningº. While the authors found this to be sufficient,

the approach does not fully utilise the ability of the head

camera to perceive its surroundings, particularly in a dynamic

environment, and is likely to result in collision for holonomic

locomotion.

Works that have considered active gaze control have applied

it to different problems than what we are concerned with.

Lidoris et. al. [13] present an algorithm to combine trajectory

planning and gaze direction control for usage in SLAM. Their

objective for gaze control is to minimise estimation errors

while exploring an unknown environment.

The work of Seara et. al. is most similar to our problem in

determining where to look for obstacle avoidance [14]. They

consider active gaze control for a vision-guided humanoid and

determine the pan and tilt of a mounted head camera, however,

their objective is to maximise the predicted information gain

for the position of known objects in the scene. By contrast,

our approach focuses on being applicable in unknown envi-

ronments with 3D collision avoidance.

III. GREEDY VOXELISED COST OPTIMISATION

Our approach is divided into two parts; the first dealing with

reward assignment and the second with the optimization.

A. Reward Assignment

Our primary concern at all times is that of safety and achiev-

ing a collision-free trajectory. Many sampling and search-

based motion planners use swept trajectory occupancy to de-

termine valid states for the robot. This assumes that we already

know the occupancy of voxels within the swept trajectory. In

an unknown, or dynamic environment, this swept trajectory

needs to be recently observed by the perception system, e.g.

a camera sensor, in order to ensure that it consists solely of

free space. If obstacles occupy this space, the motion planner

requires this information in order to re-plan for a collision-

free trajectory. We propose using a reward for head camera

poses that observe swept trajectory regions of the workspace.

By observing these regions, the motion planning framework

can react and re-plan to avoid collisions with obstacles that

are found to be in the way.

Since trajectories can have large time horizons, we propose

a tiered reward that depends on how soon the swept trajectory

steps occur in time, thus prioritising the observance of states

that occur sooner. This is illustrated in Fig. 3.

Beyond safety, we wish to explore the environment and

maintain a broad perception of the workspace. Being aware

of peripheral surroundings is important for enabling the robot

to find alternative paths but also for identifying dynamic

obstacles early on and incorporating their trajectories into the

motion planning. We therefore wish to encourage the robot

to have an objective that rewards exploration in its perception

strategy. We achieve this by penalising regions of space based
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Fig. 3. A visualisation of the swept trajectory rewards as described in our approach to active gaze control. Left: A full swept trajectory of rewards that will
contribute to the total reward of field-of-view cones that contain intersecting voxels. The earlier part of the trajectory (pink) is a higher priority region, with
higher reward due to temporal proximity. Right: As voxels are observed, their ‘time last observed’ is reset to zero and thus below the threshold for allocating
a reward.

on the time that they were last observed. We thus attribute

the ‘time last observed’, ti, to each voxel in a maintained

voxelmap of the environment. Each time a sensor measurement

is received from the camera, the last observed time for all

voxels is incremented by one. Voxels within the camera’s

current field-of-view cone are reset to zero since they have

been observed. We thus maintain a voxelmap of observation

times.

Formally, we consider a robot trajectory, X(t, T ), that starts

execution at time t and has a planned duration of T . For

such a trajectory, we construct a voxelised map of the swept

occupancy, such that the occupancy of a voxel, vi is:

vi =

{

0 Not occupied

τ Occupied,
(1)

where τ = [0, T ] is the earliest time index of the trajectory

which results in occupancy.

Using the intuition previously described, we wish to assign

reward to regions of space that have not been recently ob-

served. Among these, we want to firstly prioritise observation

of the swept robot trajectory, with greater reward assigned to

the earlier part of the trajectory and less reward assigned to

the later section. Secondly, we wish to provide a reward for

broader exploration of the environment. We reflect these three

types of reward by assigning each voxel with a reward, ri,

determined by:

ri =











c1 vi > 0 and vi <= τs and ti >= τc

c2 vi > 0 and vi > τs and ti >= τc

max(c3ti, 1) otherwise
(2)

where c1, c2, and c3 are positive constants to be tuned ± these

parameters determine the balance between observing the near

and far sections of the swept trajectory and exploring the

environment. τs represents the farthest step in the currently

planned trajectory that is deemed to be a high priority for

observation. An example reward allocation for the swept

trajectory volume is shown in Fig. 3. τc represents the user-

defined threshold for a safe ‘time last observed’ ± a smaller

value will result in a more conservative behaviour that is more

suited for dynamic environments with fast moving objects. In

contrast, a large value is suitable for static environments. We

emphasise that in Equation 2, c1 and c2 rewards are only

allocated if the voxel has not recently been observed, i.e.

ti >= τc.

We use the camera’s projected cone of vision (field-of-view

cone) to reset voxel observation times, rather than raycasting,

so as to avoid reward allocation for regions of space that

we know cannot currently be observed. Raycasting in the

perception pipeline is performed between the camera and an

observed pointcloud against which the rays will terminate

in collision. However, in the gaze control problem, we do

not consider whether regions of space are denoted as free,

occupied, or unknownÐonly whether they have been observed

recently enough. For example, some camera positions may

result in facing a wall; in these cases, a raycasting approach

would terminate at the wall (leaving the space behind the

surface as ‘unknown’), and not reset ‘time last observed’

counters on the other side of the wall. The lack of resetting

these counters may wrongly encourage the optimisation to face

the wall again so as to observe these unobservable voxels.

Hence, we instead opt for a field-of-view cone which instead

can result in voxels on the other side of surface boundaries

being labelled as observed for the purposes of gaze control

optimisation. On first inspection, the reader may be inclined

to think that in these instances, the method will now discourage

the robot from observing the other side of the wall for future

times. However, this is not a problem due to our method of

incrementing the ‘time last observed’, independent of their

occupancy, and applying a threshold, τc. In our wall analogy,

over time, the robot will try to allocate reward to the previously

unobservable areas of space and if the robot has moved to a

location in which the robot’s vision is no longer obstructed by

a wall, then the voxels may be observed in the optimisation.

B. Optimisation

With the reward of each voxel updated at every timestep,

we consider a set of motion primitives local to the camera’s

current position. For each motion primitive, we consider

the ‘field-of-view’ cone and calculate the weighted sum of

rewards. We implement a greedy optimisation approach and

select the motion primitive with the greatest reward for exe-

cution.

When considering a two-dimensional workspace, we found

that spatially discretised costs are easily performed using a
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CPU. However, in three-dimensional workspaces, we lever-

aged our previous work [6] by using a GPU-accelerated per-

ception framework based on GPU-Voxels [15], [16], enabling

us to maintain a reactive update frequency for the gaze control.

By integrating gaze control with our previous framework, we

are able to re-use the same voxelmap information for both

whole-body motion planning and gaze control optimisation.

In a large 256×256×64 voxelised workspace, at a resolution

of 5 cm, we found that our gaze controller operates at 4.9Hz
while optimising over 144 motion primitives ± we note that

within each iteration to determine the best camera position,

not all 144 motion primitives will necessarily undergo full

evaluation as those which violate joint constraints will be

terminated early and allocated a maximally negative reward.

Higher rates could be achieved by reducing the voxelmap size,

reducing the maximum distance of the camera’s field-of-view

cone, or by considering fewer motion primitives. Hardware

specifications are: NVIDIA RTX 2060 GPU, 8-core Intel Core

i7-9700 CPU @ 4.50GHz and 2133MHz DDR4 RAM.

IV. HEURISTIC BASELINE METHODS

Since, to the best of our knowledge, there does not appear

to be a comparable ‘smart’ approach in the literature, we

consider three baseline heuristic methods to compare against

our proposed optimisation method:

1) Constant: The camera remains in a fixed position with

respect to the base of the robot.

2) Panning: The camera continuously pans at a constant

rate throughout the task. The tilt of the camera is fixed

such that the optical axis intersects the ground at 30

degrees.

3) Look Ahead: The camera is directed towards the future

base position of the robot at a fixed number of time steps

ahead in the planned trajectory.

To evaluate the methods, we perform benchmarking on a

variety of tasks in both 2D and 3D. In all experiments, the

robot is not provided with any knowledge of the environment

prior to receiving a goal command, after which all mapping

and perception is obtained via live sensor measurements.

V. EVALUATION

We evaluate our method in static 2D and 3D environments

(Sections V-A and V-B respectively), followed by evaluation of

the methods in a dynamic 3D simulation. Finally, we perform

hardware experiments in dynamic scenes (Section V-C).

A. 2D Benchmarking

In 2D, we consider a 1000 × 1000 workspace in which

the outer perimeter is occupied by walls. Static obstacles are

generated randomly within the workspace in which a robot

performs motion planning tasks between start and goal state

pairs (x, y, θ).
We generate 150 different environments, comprising of five

static rectangular obstacles of random size between 10 and

30 units (cells) in each dimension. We generate 20 differ-

ent start/goal pairs for evaluation on these environments. A

task comprises of an environment selection and a start/goal

pair. For each task, we implemented each of the four head

behaviours in tandem with a GPMP2 motion planner [4]

executed in a receding-horizon manner as detailed in our

previous work [6]. We consider a mounted camera with pan

joint values in the range of [−π

2
, π

2
], relative to the front of

the robot. For the motion primitives in our optimisation, we

consider values at π

16
intervals within this range, resulting in

17 possible head camera positions to greedily optimise. To

evaluate the success of each method, we consider both whether

the resultant trajectory was collision-free, and the percentage

of the environment explored during execution. A selection of

Fig. 4. A sample of 2D motion planning tasks comprising of a perimeter
wall, obstacles (blue), and a start/goal state pair (yellow triangles).

2D task environments are shown in Fig. 4.

By conducting a parameter sweep for a series of similar

tasks, we found the optimum values of c1, c2, and c3, in our

setup to be 106, 103, and 1 respectively. We found that values

of τs = 3 and τc = 3 performed well. For the field-of-view

cones, we use an opening angle of π

2
and a distance cutoff of

200 pixels.

Of the 3000 tasks in total, we retained a randomly sampled

subset of 2000 tasks in which at least one method succeeded

in generating a collision-free trajectory ± this provides us with

a fair comparison across the methods and provides assurance

that the motion planning problem was solvable.

Results from the 2D benchmarking experiments indicate

that our Optimised method, along with the Look Ahead

method, achieve the greatest success rates for producing

collision-free trajectories (95%). This is likely due to maintain-

ing a much better perception of the region of space directly in

front of the robot. As shown in Fig. 7, these two methods result

in the robot traversing cells which have typically been more re-

cently observed. We note again that this feature is of particular

interest when considering dynamic environments, since an old

observation of a cell may no longer be valid. The additional

benefit of our method is a significantly enhanced perception of
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Fig. 5. Top: A comparison of the mean map exploration, as a percentage of the
total workspace, achieved by each of the gaze behaviours on our 2D dataset.
Bottom: A similar comparison of the success rate for each gaze behaviour
in achieving collision-free resultant trajectories. We see that our Optimised

method provides significantly greater map exploration while maintaining the
joint highest success rate for achieving collision-free trajectories.

Fig. 6. For each task, we rank the gaze control behaviours in a tiered
approach, firstly prioritising successful collision avoidance, followed by the
map coverage achieved during execution. Across our 2D dataset of tasks, we
find that our Optimised method outperforms all other methods in 94% of
tasks.

the surrounding environment due to the exploration reward in

the objective function. Figure 5 shows the mean map coverage

achieved by each of the four methods over the subset of

tasks in which all methods succeeded in finding collision-

free trajectories Ð our method provides a 52% to 102%
improvement over the benchmark approaches in exploring

the environment during execution. As previously discussed,

the primary consideration of an effective gaze controller is

in providing successful collision avoidance, followed by any

additional ability to observe the surroundings. We therefore

ranked the four methods hierarchically ± firstly by whether

trajectories were collision-free and secondly by the total map

coverage. Results of this ranking are shown in Fig. 6 whereby

our method ranks first 94% of the time.

Fig. 7. Distribution of the last time that cells were observed at the time of
robot occupancy. Last observed times were initialised and clipped at 100 time
steps. Times for voxels that are observed by the camera are reset to zero
and incremented for each subsequent time-step that they are not observed. To
ensure safe locomotion, cells should be recently observed prior to the robot
moving to occupy them. Our Optimised method allows us to parameterise our
‘cautiousness’ of the environment and trade-off the conservative behaviour of
the Look Ahead method, with greater map exploration.

B. 3D Benchmarking

We conducted a series of 3D simulation experiments using

a Toyota HSR robot in a variety of static Gazebo environments

as shown in Fig. 8, as well as dynamic environment shown

in Fig. 9. For each environment, a base goal (x, y, θ) was

provided and our entire pipeline (integrated motion planning,

perception, and head controller) was executed so that the HSR

would autonomously navigate towards the goal. In each task,

after receiving the goal location, the head camera was in-

structed to first look towards the goal destination and calculate

the initial trajectory plan; after which all head movements were

controlled by the head controller under investigation.

In our optimisation, we consider 16 joint values for the

panning angle and nine values for the tilt, resulting in 144

possible head configurations to optimise over. We recorded

whether trajectories were collision-free and the total portion

of the map observed during execution. Each task was repeated

10 times for each head behaviour. In our simulated 3D

and hardware experiments, we use a 0.5 s interval between

motion planning time-steps and found that a threshold value

of τs = 15 performed well, corresponding to a time threshold

of 7.5 s. We similarly found τc = 150 voxelmap updates to

perform well. For reference, although we continuously re-

estimate the trajectory time-horizon during execution, a typical

starting horizon for tasks such as in the hardware experiment

is ∼ 35 s. We use a pyramidal field-of-view cone for an ASUS

Xtion Pro Live camera, matching the parameters for the sensor

characteristics [17], with horizontal and vertical angles of 58°

and 45° respectively. In line with the sensor’s recommended

‘distance of use’, we apply a distance cutoff of 3.5m.

Our findings are further validated in the 3D case with results

shown in Fig. 10. In particular, we find that our method is more

robust at providing collision-free trajectories and typically

provides 2-3x greater map exploration during execution on the

static environments, despite taking a similar amount of time.

In particular, we note that our proposed optimisation method

provides a much higher success rate than the benchmarks

on the ‘Occluded’ environment. In this environment, vision

of a second smaller obstacle is occluded by the first. The
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Fig. 8. Aerial view of the four static 3D simulation environments: ‘Free’, ‘One Obstacle’, ‘Occluded’ (a second smaller obstacle is hidden behind the first),
and ‘Clutter’. Start and goal robot states are shown as blue and green respectively.

(a) Constant (b) Panning (c) Look Ahead (d) Optimised (Ours)

Fig. 9. Our simulated 3D dynamic experiment highlights the benefit of using an active gaze control approach that aims to maintain a broader perception of
the environment. In the examples shown, all three benchmark methods demonstrated collisions with the dynamic obstacle. In contrast, our Optimised method,
which balances the objectives of map exploration and observing the swept volume of the robot’s currently planned trajectory, is able to successfully perceive
and avoid the dynamic obstacle.

benchmark methods would typically fail to observe the back

of the first obstacle as a trajectory around it was executed,

thus resulting in collision.

In the 3D dynamic task, the Constant and Panning methods

failed to generate a collision-free trajectory in any of the 10

repeated trials. The Look Ahead behaviour found a collision-

free trajectory in two of the trials, narrowly passing in front of

the obstacle. In contrast, using the Optimised approach resulted

in a 100% success rate and achieved significantly greater map

coverage, as shown in Fig. 10.

For the dimensions given previously, the generation of

the costmap takes approximately 0.5ms. Cost evaluations for

each of the primitives are then performed using this costmap.

We found the cost evaluation for a single camera primitive

to be 2.4 ± 0.4ms. In the optimisation, camera primitives

that result in a position outside the allowed joint ranges

bypass the optimisation and return an infinite (negative) cost.

Over an entire trajectory, in which the camera position was

determined 160 times, our optimisation approach achieved a

mean computation time of 205± 32ms to determine the best

camera pose for the next step.

C. Hardware Experiments in Dynamic Environments

To demonstrate our approach on hardware, we use a phys-

ical Toyota HSR ± an 8-DoF mobile manipulator with a

holonomic base and a head-mounted Asus Xtion Live RGB-

D camera. The head motion is controlled by a further two

degrees of freedom (pan/tilt). The robot is provided with a

whole-body goal state to pick up a bottle on the other side of

a room. During execution, a human walks into the scene and

places a large obstacle in the planned path of the robot. The

task is shown in Fig. I, while a series of snapshots from this

experiment are shown on Fig. 11.

We found that by using our method, the robot successfully

re-observed the space in front of it, perceiving the dynamic

change in the environment and successfully re-planning its

trajectory to avoid obstacles and pick up the bottle.

Due to the height of the head (and the torso translation

joint), this was particularly apparent when the obstacle crossed

the path close to the robot; the heuristic methods would

typically look over the obstacle and fail to re-observe the

space immediately in front of the robot’s base while the

optimised method would alternately observe the space in front

of the robot and the last planned robot trajectory. As a result,

the observed behaviour of waiting until the path was clear

appeared natural.

VI. DISCUSSION

Our greedy optimisation approach proves to be a simple

solution to the trajectory-constrained gaze control problem that

we have described. By only considering the next camera pose,

although not meeting real-time requirements of ∼ 30Hz, we

are able to achieve a sufficiently high update rate of ∼ 5Hz.

Over longer time-horizons, our method will likely provide

sub-optimal solutions that are less smooth than gaze trajec-

tory optimisation performed over a time horizon. Optimising

over longer horizons is an interesting topic for further work,

however the main concern is potentially large compute times

arising from generating and evaluating rewards for subsequent
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Fig. 10. Resulting success rate and mean map coverage achieved by each gaze control method across our 3D simulation tasks. Our Optimised method provides
consistently high success rates in generating collision-free trajectories, while providing up to 7.4× improved map exploration in the static environments.
Crucially, in the dynamic environment, the Optimised approach was the only method to reliably achieve collision-free trajectories.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 11. We validate our proposed method for optimised gaze control on a 8-DoF Toyota Human Support Robot in a live dynamic environment. With time
increasing in the images, from left to right, we overlay the calculated ground distance field generated in real-time by the perception system. Between Fig.
11a and Fig. 11b, the camera perceives the large obstacle prior to moving. As the dynamic obstacle is moved, the gaze controller continues to balance map
exploration with maintaining recent observations of the swept whole-body robot trajectory. In Fig. 11c, we see that the robot observes the dynamic changes
in the environment and is able to quickly re-plan accordingly to avoid collision. Figure 11d shows the robot taking a collision-free path around the newly
observed obstacle. Note that while we visualise the projected ground distance fields, our method operates using the full 3D voxelmap as shown in the row of
images below.

time-steps. This limitation is also shared by the state-of-the-art

solutions for the typical next best view problem.

The benefits of our approach will inevitably vary depending

on the specifications of the robot on which it is implemented.

For example, robots with a slower, more restricted head motion

are likely to see smaller gains in map coverage. Conversely, as

hardware improves and systems become more agile, we expect

that our approach will lead to further performance gains across

a range of platforms.

In examining the trajectory-constrained gaze control chal-

lenge and developing our optimisation-based approach, we

have primarily focused our testing on static environments.

Whilst we demonstrate our approach in dynamic environ-

ments, to ensure that our approach provides a robust solution,

further work is required in exploring the link between the tune-

able parameters and the dynamic obstacles that we expect to

encounter. While it would be interesting to conduct further

experiments in complex scenarios, and stress-test the approach

in the presence of non-convex obstacles, these tests are more

relevant for testing the motion planning method since the

gaze control optimisation, as presented here, is agnostic to

obstacles; we will thus explore this in future work. Addi-

tionally, we will explore the incorporation of additional priors

that may be available, such as semantic information, into the

optimisation to better observe dynamic obstacles. Humans in

particular are likely to move in smooth, structured motions

with a goal in mind Ð a probability distribution over a known

workspace could thus be used to represent the places that a
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human is likely to occupy ± these regions can be prioritised

in the optimisation. Within the current framework, this could

be achieved by assigning additional attributes to voxels for

incorporation into the reward function. Further work in this

area will extend our previous work [18] of using predicted

composite signed distance fields to account for predicted

dynamic obstacle trajectories; this framework requires the

perception system to observe and track dynamic obstacles

local to the robot. Accounting for the predicted movement of

moving obstacles, will help us avoid scenarios in which the

motion planner repeatedly plans for the robot to go into the

path of the moving obstacles.

In this work, our primary focus has been to make observa-

tions that are relevant for collision-avoidance with additional

exploratory reward being aimed at observing regions of space

that have not been recently observed. An interesting avenue

to explore in future work would be to combine this with

the typical NBV problem and consider information gain in

the reward function to promote efficient reconstruction of the

environment. The difficulty in this approach will likely be de-

termining the trade-off between the rewards for reconstructing

the environment and for collision-avoidance, i.e. the swept

trajectory term.

A limitation that we observed when using active head

behaviours is an increased error in pointcloud synchronisation

and the effects of a rolling vs global shutter. Fast camera

movements can result in ‘phantom’ observations as well as

inaccuracies in the position of observed objects. These errors

can be mitigated by both maintaining a tight constraint on the

time-synchronisation of robot joint states and received sensor

measurements, as well as limiting the speed of head camera

movements.

On a similar point, our method uses a weighted reward

which determines the trade-off between exploring the envi-

ronment and monitoring the planned trajectory ahead. These

weights are likely to be determined by the environment in

which the robot is operating and may evolve over time. In

static environments, or scenes in which dynamic obstacles

move more slowly, the time threshold can be increased.

The problem that we have addressed in this work could

also merit further investigation with reinforcement learning

methods, particularly for known environments where data

can be accumulated over time. We believe that this may be

applicable since the reward function is intuitive yet difficult

to parameterise, i.e. we wish to reward better observance of

the environment and behaviours that result in collision-free

trajectories.

VII. CONCLUSION

We provided the first description of active gaze control

for trajectory-constrained mobile robots and proposed a novel

solution that uses a greedy optimisation of voxelised rewards

across motion primitives. We compared our method to several

benchmark approaches, in 2D and 3D, and show that it out-

performs in both collision avoidance and general perception of

the environment. In 3D dynamic environment, we demonstrate

our method to be the only approach that can reliably achieve

a collision-free trajectory and avoid the moving obstacle. We

further verified our findings on a physical Toyota Human

Support Robot (HSR), using a GPU-accelerated perception

framework, and demonstrated that our system can robustly

operate in unknown and dynamic environments using live

sensor measurements.
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