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Abstract— Object rearrangement has recently emerged as a
key competency in robot manipulation, with practical solutions
generally involving object detection, recognition, grasping and
high-level planning. Goal-images describing a desired scene
configuration are a promising and increasingly used mode
of instruction. A key outstanding challenge is the accurate
inference of matches between objects in front of a robot, and
those seen in a provided goal image, where recent works have
struggled in the absence of object-specific training data. In this
work, we explore the deterioration of existing methods’ ability
to infer matches between objects as the visual shift between
observed and goal scenes increases. We find that a fundamental
limitation of the current setting is that source and target
images must contain the same instance of every object, which
restricts practical deployment. We present a novel approach to
object matching that uses a large pre-trained vision-language
model to match objects in a cross-instance setting by leveraging
semantics together with visual features as a more robust, and
much more general, measure of similarity. We demonstrate that
this provides considerably improved matching performance in
cross-instance settings, and can be used to guide multi-object
rearrangement with a robot manipulator from an image that
shares no object instances with the robot’s scene. Our code
is available at https://github.com/applied-ai-lab/
object_matching.

[. INTRODUCTION

In recent years, there have been a number of successes
in applying deep learning to enable manipulation skills
on robots which operate directly from images. Alongside
this, the ‘goal image’ has emerged as a convenient way
to specify an instruction for a robotic task, ranging from
guiding visual servoing towards a single object [1] to multi-
object rearrangement settings [2]-[4]. Goal images enable
specification of the goal in the same modality as the system
input for a robot with vision sensors, and are a practical
way to express desired spatial outcomes for objects in a
scene in many settings. Consider a household task, such as
laying a dining table, or an industrial task, such as kitting
products into a canonical set — in both settings it can be
more convenient to simply image the desired goal state rather
than exhaustively define all degrees of freedom.

Furthermore, object rearrangement problems have at-
tracted interest recently as a challenging, and quite general,
robotic manipulation problem, with the goal image motivated
as a key component [2], [3], [5S]-[8]. There has been some
success recently in the development of systems that can
achieve rearrangement tasks when provided with a goal im-
age [3], [9], generally through the integration of pre-trained
object segmentation, grasping primitives or grasp prediction
networks, and subsequent high-level planning at the object
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level. However, progress in learning both grasp prediction
networks [10], [11] and segmentation networks [12] that
generalise to unseen objects, mean that it is increasingly
possible to both localise and grasp objects (two important
stages in successful rearrangement [3], [8]).

Thus, a key outstanding challenge in specifying outcomes
with images is that of robustly matching objects in a goal
image to those in the current scene, following object de-
tection. Successful matching is critical to successful inter-
pretation of a goal image, and poor matching has emerged
as the principal performance bottleneck in recent works on
tabletop rearrangement [3], [13]. Currently, a wide range of
matching methods are used, from hand crafted features such
as colour histograms [14] to object-specific visual features
learnt unsupervised [15], and deep feature extractors trained
on large scale computer vision datasets [3], [9].

This work conducts a controlled analysis and comparison
of approaches to matching under various visual shifts be-
tween the current (source) and goal (target) images, which
we find to be lacking in the existing literature. We control
for factors such as pose and background mismatch and report
results on a number of baselines. Furthermore, we identify a
fundamental limitation of the existing matching approaches,
finding that matching is currently only demonstrated when
source and target images contain the same instance, i.e two
views of exactly the same object. This can be restrictive in
practical settings. Consider again the table laying problem.
It is unreasonable to expect the goal image to contain the
precise crockery instances in the current scene. Rather, the
goal image will specify a semantically consistent target,
specifying where a mug or plate should go, regardless of their
precise appearance. We thus further examine the matching
problem in a cross-instance setting, in which source and tar-
get images contain different instances of the same semantic
object, which may be visually distinct. In this setting, we
find that existing matching approaches, which rely solely on
visual descriptors, degrade significantly in performance.

Next, we propose a novel solution to the cross-instance
matching problem via the re-purposing of the recently re-
leased CLIP model [16]. In contrast to existing matching ap-
proaches, which rely solely on visual features, the proposed
model facilitates the introduction of semantic information to
the matching problem, leading to a substantial boost in our
proposed cross-instance matching performance. Finally, we
deploy our method on a real robot system, finding that our
proposed semantic matching protocol is important for cross-
instance matching in the real world.
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Fig. 1: Visual-Semantic Matching: For both current scene and goal images, we use an instance segmentation network to
extract crops of all present objects. We then compute similarities between the crops’ CLIP visual features and the semantic
features of a set of K text prompts. A final M x N similarity matrix between the current and goal crops can then be
computed based on the crops’ similarity to each of the semantic features. The ‘X’ operator is X (A, B) := ABT.

II. RELATED WORK

A number of recent works, challenges and benchmarks
have considered robotic scene rearrangement with visual
observations, a challenging problem for robotics and em-
bodied artificial intelligence [2]. Simulated benchmarks have
been proposed for both mobile [5], [6] and tabletop robotic
manipulation [7], [17]. A common theme is the use of visual
instructions in the form of goal images, as a means of
communicating a target scene configuration. Recent attempts
at tabletop rearrangement on real robot platforms take a
modular approach, where object detection is executed in the
current (source) scene and the goal (target) image. Objects
are then matched across the scenes, and planning over pick-
and-place actions brings about the desired object displace-
ments [3], [8], [9], [13]. Existing works have tackled partic-
ular parts of this pipeline, with work on improved collision
checking [8], high-level planning [3], [9], [18], and vision-
based RL approaches [4], [19]. Several of these works note
failures in successful matching [3], [9] due to the challenges
of accurately comparing objects from only single views. It
is notable that, with the exception of some invariance to
viewpoint shift [9], goal-conditioned works are restricted to
goal images generated in the exact setting, and with the
exact object instances, that will be encountered by the robot
at deployment. Matching approaches handle only instance-
level correspondence, and cannot infer semantic matches
between scenes. We review existing matching approaches,
and attempts to exploit object semantics, in robotics.

A. Object matching in robotics

Hand-crafted visual descriptors such as colour histograms
were originally proposed for this task [14] and remain widely
used today [20]. More recently, features extracted from the
backbone of a CNN classifier have been applied to tackle
the matching problem [3], [9]. These features have been
trained on large scale datasets such as ImageNet [21] and
demonstrate invariance to nuisance factors such as lighting
and 2D rotation. However, outside of training classes, these
features have not been trained to be invariant to instance-
shift, and hence degrade in matching performance when
the source and target images contain different instances of
semantically identical objects. Object matching is related to
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the mature field of template matching, but where only one
single view of the object exists as the ‘template’. Solutions
to single-view instance recognition have been proposed. [22]
fine-tune a CNN pre-trained on ImageNet on multiple views
of many 3D objects to learn pose-invariant representations
which is finetuned on a single image of a new object for pose-
invariant object detection. They show that this performs far
better than a large range of pre-existing template matching
techniques for a single template image. Other deep learning
methods reduce the number of views required [23]-[25].
However, while these methods are often able to build models
robust to pose shift of objects, they require that the same
instance of the target object is being sought. [26] trained a
cross-domain image matching technique to enable products
viewed by the robot to be matched to a database of Amazon
product photos, but this instance-matching method requires
a known, systematic shift between source and target. In
contrast, in this work, through leveraging visual-semantic
grounding, we handle a much more general case, in which
arbitrarily different instances of objects with the same un-
derlying semantic description can be successfully paired.

B. Visual-semantic object picking

There have been numerous attempts to enable language-
guided robotic manipulation by grounding language instruc-
tions to visual observations. While a different mode of
instruction to the goal image, these works are related in
their use of semantics in aiding robotic disambiguation of
the visual world, and in their use of vision-language models.
Work concurrent with this conditions imitation learning on
CLIP embeddings of text instructions to improve generali-
sation [27]. Several recent works present systems to guide a
robot to pick a particular object from a scene with language
prompts viewed as referring expressions [28]-[30]. Referring
expression comprehension is an area of computer vision
research that seeks to ground an unstructured text prompt
from a human that refers to an item visually present in an
image, and locate the item on this basis. When brought to
robotic systems, standard models [31] trained on a dataset
with a limited number of classes tend to be used [28]-[30].
While this work also proposes language as a mechanism for
resolving visual ambiguities, we do not rely on pre-training
and are able to handle arbitrary object classes.



III. VISUAL OBJECT MATCHING

In this section we describe the core matching models we
compare in this paper. We first describe the proposed visual-
semantic models based on CLIP [16], before summarising
the baseline matching models against which we compare.

Preliminary notation A common operation when com-
paring objects is, given a set of inputs, 7, and a feature
extraction function, f(-), to build a set of normalised feature
vectors. Here 7 could refer to a set of image crops or text
prompts. Formally, we define the operation F, as:

ft)

F(fT)= {m

VteT} 1)

A. Visual-Semantic Models

In this work, we propose semantic matching through the
recently released CLIP model [16]. CLIP consists of a pair
of neural network embeddings which jointly map text-image
pairs into a common feature space. The model is trained
on web-scale data and is thus capable of interpreting a wide
range of semantic objects. In this way, by finding similarities
between a set of text (semantic) prompts and a given image,
one can identify the most likely category of an object within
the set in a ‘zero-shot’ fashion.

1) Object Matching: The proposed visual-semantic object
matching process is shown in Figure 1. Leveraging unseen
object instance segmentation [12], object crops are taken, and
all M objects in the source and the N objects in the target
are passed through the image encoder. The set of K possible
object categories are passed through the text encoder. This
allows us to construct two classification matrices, C's and
C%, which describe the model’s confidence that each object
belongs to each of the K categories. Next, based on these
confidences for each object, we compute a similarity between
each object in the source and the target.

Consider ¢, and ®, as the deep image and text CLIP
encoders respectively. Consider X as the set of cropped
object patches in either the source, X, or target, A, and
Vi as the set of text prompts. Normalised visual features
are constructed for the crop sets as v; = F(P,, Xs) and
vy = F(P,, Xz), and semantic features as s = F(P;, Vi ).

The classification matrix for either source or target, C, is
then constructed as C;;, = (v;, S;) where (-,-) represents
an inner-product. The similarity matrix S between source
and target is computed as S = C;CT. The final step is
performing assignment based on the similarity matrix, which
can either be performed with the argmax () operation
or through minimum weight matching with the Hungarian
algorithm. We experiment with two variants of the CLIP-
Semantic model: first we pass all K semantic labels for
matching (CLIP-SemFeat-K); we also pass only the seman-
tic labels which we know to be present in the target image
(CLIP-SemFeat-N). These two settings both correspond to
practical scenarios. In many tasks, there might not be prior
knowledge of exactly what will be in the scene, but we know
that the relevant objects can be described by a subset of K
labels. For instance, a robot laying a table might enumerate

the names of all items of tableware, even if only a fork
and spoon are present. On the other hand, in a warehousing
setting, the exact objects present may be known, giving a
set of IV labels. Intuitively, if K > N, CLIP-SemFeat-K
considers some labels irrelevant to the scene.

2) Prompt Engineering: We seek to optimise CLIP to
ground the textual descriptions of the objects to their corre-
sponding objects across the considered datasets (Section IV),
to ensure that the model can provide meaningful proximity
measures between crops of objects across the images, and
their text descriptions, through the shared embedding space.
To this end, we engineer the text prompts used in the
semantic embedding function. For each object class, we take
a small number of reference crops, and type around 5 short
descriptions of the object. Using CLIP, we compute the
cosine similarity between the visual embedding of the crops,
and text embeddings of these descriptions (including the
original description). We take the descriptions with highest
similarity as the improved set of semantic prompts, with the
entire process taking a couple of minutes for a single user.

B. Baselines

In our experiments, we compare to a number of baseline
matching approaches used in recent rearrangement works.
All methods rely on extracting purely visual descriptors
of crops based on the pixel values, before constructing a
similarity matrix between the N source and M target crops.
Formally, the visual features are extracted from the crops as
v = F(f,X) for a given feature extraction function f(-).
The similarity matrix is computed solely based on the visual
descriptors as Syn = (Vpm, Un).

Colour Histograms: the winning submission from 59
teams to the OCRTOC Tabletop Rearrangement Challenge
2020 used the cosine similarity between colour histograms
for object recognition, and deployed nearest neighbour voting
against a dataset of multiple images of each potential object
to determine the identity of an object in a scene [20]. While
the goal-image setting provides only one reference crop for
each object to be matched, we consider cosine distance on
colour histograms as a first baseline. Here, f(-) involves
concatenating histograms for both the hue and saturation
values across all pixels in an image. Hue and saturation are
projections of RGB pixel values into a frame more in line
with visual cues of interest to human observers [14].

AlexNet-S: in [9], which achieves multi-object rearrange-
ment with goal-image matching for up to 12 cubes on a
tabletop, the authors use distances between the output of the
conv3 layer of AlexNet pre-trained on ImageNet. The objects
considered, though, are all cubes with distinct colours. Here,
f(+) extracts the flattened spatial features of the conv3 layer,
which retain some of the spatial structure of the input crops.

ResNet50-(S/G): most recently, ResNet50 features have
been used in [3], where they were used for finding object
matches between scenes of 2 to 5 objects. In this case, we ex-
periment with two settings, with spatial features, ResNet50-S
(before the final max-pool layer), and with global features
ResNet50-G (immediately after the final max-pool layer).



Source scene

APC-Easy ;\PC-Medium APC-Ha;’d der
Fig. 2: Examples of the 4 same-instance matching settings
we construct from the APC dataset.

MODEL | Tor-1 Top-5
RANDOM GUESS 2.6 12.8
CLIP 30.7 54.6
CLIP+ 38.0 65.2
CLIP++ 35.0 61.5

TABLE I: Zero-shot classification performance of the vision-
language model (CLIP) across the APC dataset. CLIP uses
the exact same wording as the original product names from
APC [32], formatted as "A picture of a {...}". CLIP+ uses the
same formatting but with ‘better’ labels chosen as described
in V-B. CLIP++ additionally ensembles over all labels and
additional prompt formats, as described in V-B.

CLIPVisual: to allow us to isolate the effect of the
semantic information encoded in the full CLIP model, from
the effect of the CLIP model’s visual feature extractor alone,
we also embed the crops through only the visual CLIP
backbone, f = ®,. We use these features identically to the
other purely visual descriptors.

IV. DATASETS

Our aim is to investigate matching performance in two
distinct settings: same-instance matching and cross-instance
matching. We first leverage the APC dataset [32], which
allows investigation of the instance matching setting while
controlling for degrees of visual shifts in pose and back-
ground. We then use the LVIS dataset [33] to look at cross-
instance matching, as it contains multiple instances of the
same semantic class in different settings.

A. Amazon Picking Challenge (APC) 2016 dataset

We use the dataset collected by the MIT team for their
entry to the Amazon Picking Challenge (APC) 2016 [32].
This comes with accurate predicted instance segmentation
masks for the 39 objects considered in APC 2016, and
contains 7,281 images from 452 distinct scenes. Scenes
contain between one and twelve objects arranged in two
different settings: a shelf, pictured from the side and a
plastic tote box, pictured from above. Each scene type was
recorded in two different locations, with different lighting
conditions. Each shelf scene is imaged from 15 different
views, and each tote scene from 18 views. The same 39
object instances occur throughout, though between scenes
they vary in pose, occlusion relationships with other objects,
background and lighting conditions. From these conditions
we are able to form four different object matching settings,
which we hypothesise - and empirically confirm - pose
progressively more challenging conditions for matching.
APC-Easy: we set up matching problems where both source
and target image are drawn from exactly the same scene,
but from different views. In this condition, we consider only
pairs over views that are close. Objects will in general retain
substantial visual similarity, but will be viewed from different

angles, and occlusion conditions may change slightly.
APC-Medium: as with APC-Easy, except we consider
source/target pairs for matching that are maximally dissimilar
i.e. viewed from diagonally opposite corners. While still
matching within-scene, relative object poses are substantially
shifted, and occlusion conditions will vary.

APC-Hard: we formulate source-target pairs from different
scenes but of the same setting (e.g. shelf). All scene pairs
in which there is at least one valid match to be made are
matched. Object poses are different between scenes, and
some objects will not have any valid match - we do not
count these towards the reported accuracy.

APC-Hardest: as with APC-Hard, but we sample source
and target scenes from opposite settings e.g. shelf vs tote.

We remove any trivial examples from these partitions,
where both source and target scene contain just one object.

B. Large Vocabulary Instance Segmentation (LVIS) dataset

A key limitation of the current matching tasks demon-
strated in the robotics literature is that they only consider
same-instance correspondence. This is evident when looking
at recent work [2]-[4] and instance-specific challenges and
datasets such as APC [32], and is likely due to the open
nature of the cross-instance matching problem. However,
achieving this goal would enable carrying out robotic manip-
ulation tasks that leverage a goal image without the restrictive
constraint that this goal (target) image needs to contain
visually very similar objects to - i.e. the same object instance
as - the current (source) image. We present our lab-based
experiments in Section V-D, but for a more comprehen-
sive, in-the-wild, and unbiased assessment of visual-semantic
matching performance on cross-instance settings, we use the
Large Vocabulary Instance Segmentation (LVIS) dataset [33],
a densely annotated object recognition and segmentation
dataset, with a training set of 1.27M annotations over 1203
object classes, across 100,170 images. Annotations consist
of segmentation masks and class id. To formulate a large set
of matching problems relevant to robotics applications, we
select a subset of 40 objects that could be feasibly grasped
by a tabletop manipulator, from the top 200 most-occurring
classes. All annotations that have a pixel area of less than
322 are disregarded, and and only the first instance of a
given object class from each image is kept. This leaves
around 36000 annotated instances, with a mean of 900 per
class. Unlike in the APC dataset, the open-world settings
and high number of possible classes in LVIS means most
pairs of scenes have either zero or a small intersection
of classes present. These scene pairs would present trivial
matching settings, and so we formulate matching problems
synthetically. For an N-way matching problem, we sample N
labels from the set of 40 classes, and then sample a pair of
different object crops C;7, CI for each label i € N. We then
seek to match the set of source crops {C7}) against the
set of target crops {C¥}&V. We crop based on ground-truth
masks, as we focus on matching and not detection.



SAME-INSTANCE (APC) [32]

CROSS-INSTANCE (LVIS) [33]

MODEL EASY [%] MEDIUM [%] HARD [%] HARDEST [%] | 8-WAY [%] 20-WAY [%]
RANDOMGUESS 32.3 33.1 254 26.3 124 5.0
COLOURHIST 89.4 57.7 48.0 42.2 20.3 9.8
ALEXNET-S 95.8 60.6 46.3 37.7 30.5 17.6
RESNET50-S 97.5 64.6 54.2 47.8 46.9 32.6
RESNET50-G 96.9 67.7 61.3 55.0 50.6 35.5
CLIPVISUAL 91.2 60.7 50.9 46.1 40.3 27.4
CLIPSEMFEAT-N 81.8 60.0 52.7 51.8 58.8 40.1
CLIPSEMFEAT-K 90.6 63.7 54.2 52.1 52.9 37.8

TABLE II: Matching success accuracy for baselines and visual-semantic models. The settings for same instance and different
instance matching are as described in Sections IV-A, IV-B. Best performing approaches are bold-faced. For increasingly
difficult matching settings, the performance of approaches based on purely visual features deteriorates rapidly, with the
CLIP-SemFeat approaches outperforming all baselines in cross-instance settings.

MODEL SAME- [%] CROSS-INSTANCE [%]
RANDOMGUESS 15.7 15.3
COLOURHIST 69.6 13.7
ALEXNET-S 59.0 194
RESNETS50-S 57.7 37.9
RESNET50-G 76.5 55.6
CLIPVISUAL 72.9 49.8
CLIPSEMFEAT-N 70.1 74.2
CLIPDISCRETE-N 59.0 77.4

TABLE III: Source to target image object accuracy for
baselines and visual-semantic models across same-instance
and different-instance robotic rearrangement scenes.

V. EXPERIMENTS
A. Same-Instance Matching Results

We run all baselines and variants of our method across
the APC same-instance matching settings (Section IV-A),
with results given in the left side of Table II. Accuracy is
reported as the total correct matches over the total number of
possible correct matches, which we take to be the intersec-
tion of the labels of objects visible in any two considered
scenes. We first note that all proposed matching models
do indeed experience performance degradation as difficulty
is increased. We further note the surprisingly competitive
performance of colour histograms on the same-instance
problem, suggesting the relatively simple visual nature of
current robotics rearrangement challenges. We observe that
the ResNet50-S spatial features perform best on the Easy
APC setting, suggesting that when source and target views
are very similar, spatial correspondences between features
are useful. For the Medium, Hard and Hardest settings,
the ResNet50-G global features, which contain no spatial
information, perform better. We further note that, across the
same-instance matching settings, ResNet50 features trained
on ImageNet beat CLIP-SemFeat models. Intuition for this
can be gained by analysing the results of CLIPVisual, which
uses only the visual embedding of the CLIP model for match-
ing, and which also consistently under-performs ResNet50
ImageNet features. This is likely because ImageNet models
are trained with strong data augmentation, and thus explicitly
learn features invariant to the kind of visual shifts observed
in the same-instance matching setting. In contrast, CLIP
is trained only with random-crop data augmentation, with
invariances in the visual embedding learned only implicitly
through the scale of the training data. Finally, it is notable

that even in these same-instance settings, giving the CLIP
model access to semantics boosts its performance except
in the most trivial setting, and improves robustness under
increasing difficulty versus purely visual approaches. When
looking at the APC-Easy setting, CLIP-SemFeat models
under-perform ResNet50-G by as much as 16%, while this
is gap is reduced to just 3% for the APC-Hardest setting.

B. Text Prompt Engineering

Objects in the APC dataset are described by their product
catalogue names. The descriptions are highly specific and
not designed to be semantically discriminative. For instance,
82% of APC labels include a brand name - something
that carries little intrinsic semantic value. Through K-way
classification experiments, we investigate whether such un-
tailored semantic text prompts are well understood by vision-
language models such as CLIP, with results in Table I
denoted CLIP. For comparison, we run K-way classification
again using ‘improved’ prompts following Section III-A.2.
The classification results using these labels are given by
CLIP+ in Table I. We find that CLIP+ outperforms CLIP by
7.3% in top-1 accuracy. This result affirms the significance
of the choice of semantic description used in CLIP zero-shot
classification, and by extension our visual-semantic matching
approaches. Finally, we examine the effect of ensembling
over multiple text prompts for each class, which has been
shown to be beneficial for CLIP-based classification [16].
We use all of the short descriptions in CLIP+, and format
them into the prompts “A picture of a {...}", “A picture of a
{...}, a product", “A {...}, a product", “{...}". This results in
around 20 text prompts per class for ensembling (CLIP++).
We see no further boost from prompt ensembling, and use the
CLIP+ prompts in our APC dataset matching experiments.

C. Cross-Instance Matching Results

We run all baselines and variants of our method across
20,000 matching scenarios drawn from the LVIS setting
described in Section IV-B, and present results on the right of
Table II. For text prompts for our visual-semantic matching
methods, we use LVIS’ object class names (mean length
of 1.3 words), formatted as “A picture of a {...}". The
LVIS setting enables matching up to 40 different object
classes at once, and we run with N = 8, in line with
the higher end of APC matching problems, and N = 20,



Fig. 3: Successful completion of a different-instance rearrangement task using CLIP-SemFeat-N with labels

{highlighter, stapler, lego blocks,

citrus fruit}. Inset: segmentation masks (leftmost frames) and

masked GG-CNN grasp predictions. A video of this task is available at https://youtu.be/9soVArIXJ1lM.

Fig. 4: Matching results in the real robot setting for three
different matching models. Only CLIP-SemFeat is able to
match all crops accurately.

to investigate the effect of a harder matching setting on
matching performance. Average accuracies across methods
are reported in Table II. CLIP-SemFeat-K uses all 40 object
class names, while CLIP-SemFeat-N uses only those of the
objects present. We note that all methods relying purely
on visual descriptors perform worse in this setting when
compared to the APC-Hardest results, while the CLIP-
SemFeat methods achieve the highest accuracy on these
cross-instance matching problems. These results confirm that
purely visual descriptors struggle to perform good matching
across different object instances, reinforcing the importance
of leveraging semantics in this setting. The improvement in
accuracy of CLIP-SemFeat methods between APC-Hardest
and the 8-way LVIS experiments, despite the cross-instance
shift, is helped by the clear semantic nature of the LVIS
class labels, providing prompts for CLIP that are likely to
be within its training distribution.

D. Real Robot Deployment

We assess the practical impact of visual-semantic match-
ing across a number of multi-object, multi-step tabletop
object rearrangement tasks with a Franka Emika Panda robot
arm. As before, we consider both the same-instance and
cross-instance matching setting. Critically, we show that in
the latter case, we can conduct robotic object rearrangement
that satisfies a goal image in which all object instances are
substantially visually distinct to those in the scene, through
the use of our semantically grounded matching method.

We collect a set of 25 household objects, and sample 20
scenes of objects at random, with 2 to 10 objects per scene.
For each object set, we throw the objects into the robot’s
workspace, with semi-random placement: while we seek
occasional occlusions, handling dense clutter is not the focus
of this work. An RGB-D image is taken with a robot-wrist-
mounted Intel RealSense D435i camera, and segmented with

an instance segmentation network [12]. This is taken to be the
goal image. We then conduct 3 further rearrangements of the
scene to simulate different starting conditions, taking RGB-
D images and producing segmentation masks of each. This
gives us 60 source-target image pairs with 395 valid object
matches. From a 2nd set of ‘twinned’ objects for assessing
cross-instance matching, consisting of 10 pairs of household
objects that are different instances of the same item, we pro-
duce 20 image pair problems with 2 to 10 objects per scene.
Table III shows results for both settings. CLIPDISCRETE
assigns labels to objects in the images independently, and
takes same-labelled crops as matched. We use the GG-CNN
for grasping [10], and write a mask-based collision planner
for planning pick-and-place sequences. Figure 3 shows an
example of a successful rearrangement task.
E. Qualitative Matching Model Comparisons

Figure 4 provides an example of matching results in the
real-robot setting. Unsurprisingly, Colour Histograms fail
when the colour of the source and target objects differ. For
instance, the green apple is matched to the green citrus,
while the yellow citrus is matched to the yellow bowling pin.
The ResNet50-G features overcome this somewhat, match-
ing mice and apples of different colours, exhibiting some
semantic understanding (notably, both classes feature in the
ImageNet training data). However, the ResNet50-G features
are not reliably discriminative, and assign the yellow bowling
pin in the target image to multiple source image crops.
Finally, the CLIP model is most consistently able to leverage
semantic information in source and target crops, matching
correctly despite significantly different visual appearance.

VI. CONCLUSIONS

We examine the problem of object matching for robotic
rearrangement tasks instructed with goal images, and char-
acterise the deterioration of existing matching approaches as
domain shift between source and target scene increases. We
propose a novel approach to matching that makes use of
semantic grounding, via a large pre-trained vision-language
model, providing additional information about object similar-
ity between scenes. We demonstrate, on both a large-scale
dataset and a set of objects in the lab, that this approach
enables successful matching even when the objects in source
and target scenes are different instances. We integrate our
approach as part of a robotic tabletop object rearrangement
system that can leverage cross-instance goal images. We
believe that our results motivate further exploration of se-
mantics as a disambiguating factor in vision-based robotic
manipulation tasks.
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