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Abstract— The efficient evaluation the dynamic stability of
legged robots on non-coplanar terrains is important when
developing motion planning and control policies. The inference
time of this measure has a strong influence on how fast a
robot can react to unexpected events, plan its future footsteps
or its body trajectory. Existing approaches suitable for real-
time decision making are either limited to flat ground or
to quasi-static locomotion. Furthermore, joint-space feasibility
constraints are usually not considered in receding-horizon
planning as their high dimensionality prohibits this.

In this paper we propose the usage of a stability criterion
for dynamic locomotion on rough terrain based on the Feasible
Region (FR) and the Instantaneous Capture Point (ICP) and
we leverage a Neural Network (NN) to quickly estimate it.

We show that our network achieves satisfactory accuracy
with respect to its analytical counterpart with a speed up of
three orders-of-magnitude. It also enables the evaluation of
the stability margin’s gradient. We demonstrate this learned
stability margin in two diverse applications - Reinforcement
Learning (RL) and nonlinear Trajectory Optimization (TO)
for legged robots. We demonstrate on a full-sized quadruped
robot that the network enables the computation of physically-
realizable Center of Mass (CoM) trajectories and foothold
locations satisfying friction constraints and joint-torque limits
in a receding-horizon fashion and on non-coplanar terrains.

I. INTRODUCTION

Dynamic locomotion of legged robots on rough terrains
is hard to achieve because of the high dimensionality of
multi-limbed floating-base systems and the need for fast
decisions about the footsteps placement and base trajectory.
Typical model-based approaches consist of optimal control
and TO formulations which either focus on quasi-static
locomotion or use simplified dynamics’ models to reduce
the dimensionality of the system. These simplified models
capture the main dynamics of the robotic platform but fail
to grasp important feasibility constraints of legged robots
such as the kinematic (leg workspace and joint-velocity) and
dynamic (e.g., friction cones and joint-torque) constraints.
Instead of being used in an anticipative capacity, these limits
are therefore usually only verified at the control level and
can saturate in case of violation. However, these physical and
hardware limits become significant when the robot negotiates
challenging environments and gets closer to its performance
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Fig. 1. The colormaps represent the value of the learned stability margin
for different horizontal positions of the robot’s base. High margin values
(purple) correspond to 0.07m whereas the low values (red) correspond to
−0.17m.

envelope. When complex configurations are required, joint-
level feasibility constraints cannot be neglected at the plan-
ning level [1].

One approach to tackle the computational complexity of
floating base systems is to project the joint-space constraints
into lower-dimensional spaces, typically at the centroidal
level (2-D or 6-D). Such projections are low-dimensional and
preserve the descriptiveness of the original space but they are
often expensive to compute thus defeating their purpose.

Along a different track of research, data-driven methods
attempt to move the computational burden offline, thus in-
terpreting the online decision process as a mere input-output
relationship between state and the learned behavior. In this
framework, RL methods have recently gained interest due
to their reactiveness which allows them to retain stability on
non-flat terrains [2], [3], [4]. Unfortunately, these approaches
require a significant amount of offline data generation and
training and are sensitive to reward function tuning.

A. Contributions

In this paper, we demonstrate how machine learning can
allow fast evaluation of feasibility constraints (contact fric-
tion constraints and joint-torque limits) projected onto a 2-D
space. The obtained network is a mathematical tool suitable
for the online generation of dynamic locomotion in presence
of non-coplanar contacts in different control settings. Our
contributions can be summarized as follows:

• We leverage data-driven methods to evaluate dynamic
stability of legged robots in the presence of non-
coplanar contacts. For a small loss of accuracy, we gain
a three-order-of-magnitude speed-up in the evaluation
of the stability margin and the possibility to compute
its gradient, which would otherwise be only possible by
finite-difference of the analytical computation.



• we showcase applications of the mentioned tool in both
TO and RL. We validate our approach in a physics-
based simulator over multiple gaits (walk and trot) and
on the hardware ANYmal C quadruped robot [5] in
presence of non-coplanar scenarios.

II. RELATED WORKS

The fast assessment of the stability of a legged robot is
a core issue in motion planning and control, especially for
multi-contact scenarios [6], [7]. The fast binary assessment
of static stability can be performed by means of Linear Pro-
gramming (LP) [7] or Incremental Projection (IP) algorithms
[6]. Optimal control and TO approaches, however, require a
quantitative–and non-binary–measure of robustness [8].

Only a few works have focused on dynamic stability
on complex terrains, mostly through the generalization of
the capturability analysis [9] to height variations [10] or
to the 3-D space of the CoM position [11], [12]. Other
approaches have instead focused on the generalization of the
Zero Moment Point (ZMP) onto the 6-D centroidal space
[13], [14]. Some of them have also included the possibility
to synthesize body trajectories that avoid joint-torque limits
[15]. All of them, however, assume the contact locations to be
predetermined and they are therefore not suitable for footstep
planning on rough terrains.

2-D projections of such sets are possible [16], which
enables sampling-based footstep planning on rough terrains
[17]. Footstep planning has also been performed through A*
based algorithms [18], mixed-integer convex programming
[19] or LP [20]. Such methods, however, they all consider
predefined base trajectories. Simultaneous optimization of
base trajectories and contact locations on non-coplanar ter-
rains has been achieved using mixed-integer programming
[21] and nonlinear TO [22] but their computation time does
not allow these strategies to be deployed in a receding-
horizon fashion.

Approaches based on machine learning, on the other hand,
have demonstrated their ability to generate dynamic locomo-
tion behaviors on both flat grounds [23] and rough terrains
[2]. These approaches, however, require long offline training
phases and accurate reward function tuning. Tsounis et al. [3]
leverage a model-based feasibility method [24] to guarantee
the feasibility of their policy and to discard physically-
unrealizable trajectories. Our RL application presented in
this paper, presents similarities with this work in the sense
that we also leverage a dense reward function to improve
the sampling efficiency of our training phase; the reward
function is in our case, however, an estimate of the analytical
feasibility measure learned by means of a NN. Learning of
the robot’s centroidal dynamics has already been proposed
to speed up motion planners on rough terrain [25], [26].
However, to the best of our knowledge, it is the first time
that a learned dynamic feasibility constraint is demonstrated
on the hardware for multiple gaits and multiple terrain.

On a similar line to our approach, Carpentier et al. [27]
proposed to learn feasibility constraints in order to over-
come the computation burden and enable online planning
on complex terrain. Differently from our work, however,

they focused on kinematic limits and learned a probability
density function of the CoM positions whereas we focus on
friction constraints and joint-torque limits. Besides that, we
demonstrate the applicability of our method for simultaneous
optimization of base trajectories and contact locations in two
different settings: nonlinear TO and RL.

III. BACKGROUND

For completeness, we summarize in the following the steps
required to compute the feasible region [17] and the ICP.
Based on these quantities we then define analytical stability
margin, a mathematical tool which we employ in this paper
to quantify the dynamic stability of legged robots during
motion over rough terrain. In Sec. IV we go on to explain
how we use a data-driven method to offset the computational
complexity of this analytical approach.

A. Feasible Region

Bretl et al. [6] demonstrated how the support region
differs from the convex hull of contacts points when the
robot establishes non-coplanar contacts with the environ-
ment. The authors demonstrated how the IP algorithm can be
employed to compute the support region and to efficiently
test the stability of the robot [6], [28]. Subsequently, this
method was extended to account for joint-torque limits [17]
and to dynamic conditions such as underactuated support
configurations (single and double point contacts) and external
wrenches [1].

A summary of this improved strategy is given in Alg. 1.
The algorithm iteratively solves a LP whose optimization
variables are the CoM projection cxy ∈ R2, the contact forces
fi ∈ R3 and the contact torques wi ∈ R2. The LP seeks
the furthest point c∗xy along the aj ∈ R2 direction on the
(x, y) plane that satisfies dynamic equilibrium (III.a) while
the contact forces of each end-effector i in contact with the

Algorithm 1 IP algorithm.
Input: λ ∈ R47

Result: feasible region Yfr

Initialization: Youter, Yinner, get q given λ through IK.
while area(Youter)− area(Yinner) > � do

I) compute the edges ej of Yinner

II) pick aj cutting off the largest fraction of Youter

III) solve the LP:

c∗xy =argmax
cxy,fi,wi

aTj cxy

such that :
dynamic equilibrium (III.a)
fi ∈ Ci, ∀i = {1, 2, . . . Nc} (III.b)
fi ∈ Fi, ∀i = {1, 2, . . . Nc} (III.c)
wi ∈ Bi, ∀i = {1, 2, . . . Nc} (III.d)

IV) update the outer approximation Youter

V) update the inner approximation Yinner

end while



environment lie within their friction cone Ci (III.b):

Ci =
�
fi ∈ R3 | ||(1 − nin

T
i )fi||2) ≤ µnT

i fi

�
(1)

and force polytope Fi (III.c):

Fi =
�
fi ∈ R3| ∃τi ∈ Rnas.t. MT

biν̇b +Miq̈i+

c(qi, q̇i) + g(qi) = τi + J(qi)
T fi, τ i ≤ τi ≤ τ i

� (2)

and while the contact torques wi satisfy the box constraint
Bi (III.d):

Bi =
�
wi ∈ R2 | wi ≤ wi ≤ wi

�
(3)

µ ∈ R represents the friction coefficient between the
robot’s foot and the ground (assumed here to be the same
for all contacts). The vectors qi, q̇i and q̈i ∈ Rna represent
the joint position, velocity and acceleration of the ith limb
of the articulated robot. νb = [ċT ,ωT ]T ∈ R6 represents the
generalized base velocity. The matrices Mbi,Mi and J(qi)
represent, respectively, the inertia of the base, the inertia of
the legs, and the Jacobian. The vectors τ i, τ i ∈ Rna repre-
sent the minimum and maximum joint-torque limits of the
na actuators of one individual leg i. wi = [wx, wy]

T ∈ R2 is
an infinitesimal contact torque (decoupled from the contact
forces) having maximum value of wi = [wM , wM ]T ∈ R2

and minimum value of wi = −wi such that wM ∈ R → 0.
The torques wi enable the computation of the feasible region
also in presence of single or double point contacts [1].

The set of all variables required to quantify the robot’s
instantaneous dynamic balance are the following:

λ = ( eg����
B

, ċ, c̈, ω̇, fext, τext,p1, . . .pNc� �� �
H

,

µ, c1, . . . cNc
,n1, . . .nNc� �� �

H

) ∈ R47 (4)

eg ∈ R3 is a unit vector representing the gravity axis
in the base frame B, i.e., the third row of the robot’s base
orientation matrix R ∈ SO(3). ċ, c̈ ∈ R3 are the linear
velocity and acceleration of the robot’s CoM whereas ω̇ ∈ R3

is the angular acceleration of the robot’s base. fext, τext ∈ R3

compose the wrench of an external disturbance applied on the
base of the robot (if any). pi ∈ R3, ni ∈ R3 and ci ∈ {0, 1}
for i = {1, . . . Nc} represent the feet positions, the contact
normals and the contact state, respectively. Each of these
quantities provided in the horizontal frame1 as indicated in
(4). It is important to notice that an implicit information
about the robot’s CoM position c is encoded in λ thanks
to the definition of the feet positions pi with respect to H.
The joint-space variables required in (2), but missing from
(4), can be determined from λ through Inverse Kinematics
(IK). For articulated robots with non-redundant limbs, such

1The horizontal frame has been also called with multiple other names in
the literature such as control, local or yaw frame [29]. It differs from the
global frame because of its different location and yaw angle. It differs from
the robot’s base frame for its different roll and pitch angles.

Fig. 2. Left: we define the stability margin as the perpendicular distance
from the contour of the feasible region (green region) and the ICP (red
sphere). Right: colormap representing the values of the learned stability
margin where purple is the highest and red is the lowest.

as ANYmal C, the IK problem can be efficiently solved
analytically.

At each iteration of Alg. 1 a new vertex c∗xy is added to
the inner approximation Yinner and a new edge orthogonal
to aj and passing through c∗xy is added to Youter [6].

Once Yinner and Youter have converged to the desired tol-
erance �, we obtain the feasible region Yfr as the halfspace-
description of Yinner, consisting of a number Ne ∈ N of
edges ej ∈ R2 with j = 1, . . . , Ne.

B. Capture Point
The ICP ξ ∈ R2 has been defined by Pratt et al. [9] as the

point on the flat ground where a robot, given its instantaneous
linear momentum, should place its foot to come to a complete
stop:

ξ = cxy +
ċxy

ω
(5)

where ω =
�
g/cz is the natural frequency of the Linear

Inverted Pendulum (LIP) model while cxy and ċxy are the
projection on the horizontal (x, y) plane of the CoM position
and velocity. The ICP ξ can also be considered as the point
where the CoM projection is converging to [9]. We employ
it as a ground reference point to determine the instantaneous
stability of our system: the robot is stable if: ξ ∈ Yfr.

C. Analytic Stability Margin
The feasible region is a convex set by construction [17];

we can compute the normals ne,j ∈ R2 to its edges and the
offset terms aj ∈ R such that ne,j · p− aj = 0 if p ∈ R2 is
a point that lies along ej . The normals can be stacked into
a matrix N:

N =



nT
e,1 a1
...

...
nT
e,Ne

aNe


 ∈ RNe×3 (6)

so that the signed distances d ∈ RNe between a 2-D point
p and all the edges of Yfr can be computed as: d = N ·
[pT 1]T . If all the normals ni are pointing inwards then all
the elements of d will be positive if p lies within Yfr. We
can then define the analytic stability margin ma (see Fig.
III-B) as the minimum distance between the ICP ξ and the
edges of the feasible region:

ma = min(N · [ξT 1]T ) (7)



This will result into a positive value if ξ lies inside the
feasible region and in a null or negative value otherwise.
In Sec. IV we will explain how we used a NN to estimate
this quantity from data.

IV. LEARNED STABILITY MARGIN

The algorithm presented in the previous section depends
on the centroidal and contacts state of the robot (from which
also the required joint-space states needed to determine the
force polytopes can be inferred).

The vector λ ∈ R47 represents the input state of a Multi-
Layer Perceptron (MLP) that we employed to estimate the
output of the IP algorithm that we described in Section III-C.
The learned stability margin ml can thus be obtained as:

ml = MLP (λ) (8)

A. Learning

We followed the following procedure to train the network:
1) Network Architecture: The dense feed-forward net-

work used as the function approximator of the stability
margin comprises the 47-dimensional input λ, 1-dimensional
output ml, and 3 hidden layers (256 nodes in the first layer
and 128 nodes in the other two layers). We use the softsign
activation function to introduce non-linearity in the network.

2) Generating Training Data: We use the parameters
represented in Table I as input to the network. In order to
generate the training set we sample these parameters from
the distributions shown in Table I and use the IP algorithm
to compute the analytical stability margin ma for each set of
the parameters. Note that whereas we do account for angular
accelerations of the robot’s base, the base angular velocity ω
is the only dynamic parameter that is not accounted for in our
strategy, it does not belong to input vector λ and therefore
no random data generation is required for this variable.

We noted that the usage of a uniform distribution for the
feet locations and for the base velocity and acceleration (x, y
components) was particularly useful to make sure that the
accuracy of the trained network would not quickly deteriorate
whenever the robot deviated significantly from its nominal
configuration (in which all the joint-positions are equidistant
from their kinematic end-stops) or from static conditions.

3) Supervised Learning: We then trained the network by
generating a dataset of 50 · 106 samples using a supervised
learning approach employing the Adam optimization strat-
egy [30] for backpropagation.

A graphic representation of the estimates returned by the
network is given in Fig. 2 (right). In addition to the sub-
stantial speed up in the inference time, the so obtained MLP
also enables partial derivative computation of the output (the
stability margin) with respect to the input state. As we will in
next Section, this leads to the possibility to directly employ
the MLP in nonlinear optimization problems whose variables
depend on the elements of λ.

B. Nonlinear Trajectory Optimization

To demonstrate the applicability of the learned stability
margin ml in a motion planning setting, we have formulated

TABLE I
NETWORK INPUT PARAMETERS AND THE SAMPLING DISTRIBUTIONS

USED FOR GENERATING TRAINING DATA.

Parameter Distribution

Feet in contact X ∼ U(0, 3)

Base roll and pitch angles α,β ∼ U(−π/15,π/15)

COM linear velocity ẋ, ẏ ∼ U(−1.25, 1.25)
ż ∼ N (0, 0.2)

COM linear acceleration ẍ, ÿ ∼ U(−2.5, 2.5)
z̈ ∼ U(−1.25, 1.25)

Base angular velocity –

Base angular acceleration ω̇x, ω̇y ∼ U(−1.0, 1.0)
ω̇z ∼ N (0, 0.5)

Friction coefficient µ ∼ U(0.2, 0.9)

i− th foot deviation from pxi ∼ U(−0.35, 0.35)
nominal position pyi , p

z
i ∼ U(−0.2, 0.2)

Contact normal rotations α ∼ N (0,π/8)
(about gravity axis) β ∼ N (0,π/8)

External force Fx, Fy , Fz ∼ N (0, 50)

External torque τx, τy , τz ∼ N (0, 25)

a nonlinear TO problem which leverages the proposed MLP
to enable the concurrent optimization of the robot’s base
trajectory (pose, linear and angular velocities) and contact
locations on arbitrary terrains in a receding-horizon fashion:

argmin
xb(tk),νb(tk),pi(tj)

w
���
��� ∂ht

∂pxy
i (tj)

���
���
2

2� �� �
C

such that :
MLP (λ(tk)) ≥mmin (minimum stability margin)

pi(tj) ≤R(xb) (foot range of motion)
pzi (tj) =ht(p

xy
i ) (terrain height)

xb(t0) =xt0,b, νb(t0) = νt0,b (initial state)
xb(tN ) =xT,b, νb(tN ) = νT,b (target state)

(9)
where xb = [c,R] ∈ SE(3) is the pose of the robot’s base

link and R ∈ SO(3) is the base orientation. The subscript
i represents the end-effector indices {1, 2, . . . Nc} (where
Nc is the number of contacts) whereas the timestamps tk
(with k = 1, . . . , N ) represent the time instants of the base
discretization nodes, equally spaced along the optimization
horizon. For the feet variables, rather than using a uniformly
spaced discretization like the base variables, an event-based
parametrization has been performed, only setting a foot node
at each touch down instant tj and keeping that variable fixed
throughout the stance phase duration (j = 1, . . . Ns,i where
Ns,i is the predefined number of steps of the ith foot over the
horizon T ). The problem has been formulated using third-
order polynomials to ensure continuity between the nodes.
The feet sequence here is predefined and so is the duration of
each stance and swing phase. The vertical coordinate of the



footholds pzi is set equals to ht, as enforced by the terrain
height constraint. The cost C finds a foothold on the 2.5-
D map that minimizes the terrain slope which enables the
robot to avoid inclined surfaces and edges as it navigates
over rough terrain.

The minimum stability margin constraint is used to en-
force dynamic feasibility of the trajectory all along the
optimization horizon. The value of mmin is gait dependent:
in the trot gait, for example, the feasible region is a 1-D
segment and the maximum achievable value will thus be
zero (when the capture point ξ belongs to the segment).
A minimum margin value mmin = −0.05, for example,
will guarantee that the capture point does not diverge during
the optimization horizon and that, consequently, the robot
does not fall. This constraint is computed using the learned
stability margin ml from the dynamic state of the robot (4)
at each base’s discretization nodes. As mentioned above, the
derivative of ml with respect to the optimization variables,
which is necessary for the solution of our TO problem, can
be obtained as a function of the of the vector ∂ml/∂λ, by
backpropagation of the MLP. Consider, the CoM position
variable c, expressed in (9) with respect to the world frame
W . Although c is not part of the MLP’s input state λ, the
partial derivative (∂m/∂c) can still be obtained as a function
of the feet positions p expressed in the horizontal frame H
(which are part of λ):

∂m

∂c
=

4�

i=1

� ∂m

∂pi

∂pi

∂c����
=−1

�
= −

4�

i=1

∂m

∂pi
(10)

Because, by definition, the horizontal frame is located in
the CoM, a translation of c will result in a translation of
p of equal amplitude in the opposite direction, which gives
∂p/∂c = −1. Moreover, considering that we do not know a
priori which foot affects the margin m for a given motion,
we need therefore to sum up the contributions of each leg.

Note that the minimum stability margin is the sole term in
the proposed TO problem that enforces dynamic consistency.
Because the MLP has already learned offline the relationship
between task space variables and feasible state of the robot,
it is not necessary to include here the contact forces as
optimization variables or the feasibility constraints already
included in Alg. 1 such as friction cones and force polytopes.

C. Reinforcement Learning
The proposed learned stability margin can also be used to

obtain a control policy trained using model-free approaches
such as RL [4], [31].

Most of the existing RL approaches for the complex
task of legged locomotion are sample inefficient and require
significant amount of simulated runs. Therefore, it becomes
necessary to implement efficient RL environment setups in
order to minimize computation time of each simulation step
thereby reducing the total training time. However, in order
to obtain a RL policy which exhibits the desired locomotion
behavior, significant platform-specific engineering is often
necessary. This is usually done by tuning a dense reward
function: utilizing the stability margin ma as a metric of the

Fig. 3. Comparison of the learned stability margin ml (blue) and its
analytical counterpart ma (red). Variation of the stability margin w.r.t.x
(left) and y (right) coordinates of the CoM for a quadruple (top) and triple
(middle and lower) stance configuration. The learned margin tends to divert
from the analytical margin far away from the training distribution (see Tab.
I) and near the discontinuities of the analytical margin’s gradient (see Fig.
4), which is a necessary trade-off to achieve a smooth ml function.

Fig. 4. Comparison of the stability margin (top) and its partial derivatives
(middle and bottom): the analytical and learned partial derivatives were
obtained using finite differences and backpropagation, respectively. Variation
of the stability margin (top) and of its partial derivatives ∂m/∂c̈x (middle)
and ∂m/∂c̈y (bottom) with respect to x (left) and y (right) coordinates of
the CoM linear acceleration for a double stance configuration.

robot’s performance in the reward function enables the use
of such a dense function. Additionally, learning the stability
margin estimate ml allows for the necessary reduction of the
stability inference by a considerable amount. In Sec. V-C
we show simulation results of how a RL policy, extensively
described in [4], can benefit from the leverage of the learned
stability margin.

V. EXPERIMENTAL RESULTS

The learned stability margin ml can be evaluated in about
10 µs thus offering a significant computational speed-up



Fig. 5. Snapshots of a Gazebo simulation where the ANYmal C robot walks over obstacles of 6, 12 and 18 cm while replanning its base pose, its linear
and angular velocity and contact locations at 1.5Hz adapting to the latest height map using the TO formulation presented in Sec. IV-B.

Fig. 6. Values of the learned stability margin when we vary the position
of the left-front (LF) leg at different time of the walking gait cycle. Left: at
full stance; top right: during swing of the right-front (RF) leg; bottom right:
during swing of the left-hind (LH) leg. The prevalent purple color indicates
that the motion planner has selected a good foothold as the stability margin
value remains above zero throughout the whole gait cycle.

compared to the analytical counterpart. In the next Sections
we analyse the performances of the network in terms of
reliability and accuracy. We then report the experimental
results obtained in simulation and on the hardware using
the nonlinear TO formulation and the RL policy described
above.

A. Reliability and Accuracy

We measured reliability as the amount of true positives
and true negatives that were estimated by the network
when assessing the stability of the robot’s state as a binary
problem, considering a state to be stable when ml ≥ 0.
We evaluated the models predictability based on the range
of samples within two times the standard deviation of the
dataset generated using the parameters sampled from the
distributions given in Tab. I. Over a batch of 2.5·104 samples
we obtained a true positive rate of 0.970 and a true negative
rate of 0.984.

As regards the accuracy of the network, Fig. 3 shows a
comparison between the analytical stability margin ma (red)
and the learned stability margin ml (blue) in different stance
configurations: four stance (top), triple stance with left-hind
(LH) foot in swing (middle) and triple stance with right-front
(RF) foot in swing (bottom). Figure 4 shows the evolution
of the analytic (red) and learned (blue) stability margins
(top) and partial derivatives(middle and bottom) over a wide
range of CoM linear accelerations c̈x (left) and c̈y (right).
The IP algorithm does not provide the partial derivatives of
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Fig. 7. Comparison of receding-horizon motion planning on a sagittal
step of 18 cm using the SRB model (top) and the proposed feasible region
(bottom). Using the feasible region results in wider stance configurations
without needing of additional costs/reward functions and it pushes the CoM
further away from the most retracted legs, in order to alleviate the load on
those joints when close to their torque limits.

the analytical margin ma, which we therefore computed by
first-order central difference. This requires two calls to Alg.
1 resulting in a 20.0ms computation time for each partial
derivative; this leads to a 940.0ms computation time for
the vector of partial derivatives ∂ma/∂λ with respect to the
full input state λ ∈ R47, almost four orders of magnitude
more than the time required to infer the learned counterpart
∂ml/∂λ (around 100 µs).

The accuracy of the ml curves shown in Fig. 4 is critical
for its successful deployment in real-world applications. In
particular, the derivatives with respect to the base accelera-
tion are relevant for TO strategies. Although the accuracy
error deteriorates as the state of the robot moves away
from the training range (see Tab. I), we can see that the
prediction error of ml is always below 1.0 cm for CoM
accelerations within the range of: c̈x ∈ [−2.0,+2.0] m/ sec2

and c̈y ∈ [−2.0,+2.0] m/ sec2.
Fig. 1 shows the value of the learned stability margin

when varying the base position. As expected, the stability
margin is larger near the centre of the support polygon
but the largest margin does not necessarily correspond to
this point since the margin used also takes into account the
joint-torque constraints. Similarly, Fig. 6 shows the value of
the learned margin when changing the position of the left
front foot, at different time instants of the gait cycle. Since
the used stability criterion takes into account the contact
normals ni, the positions very close to the edges of steps
are already naturally avoided without need to add any cost.



Fig. 8. Oxford’s ANYmal C robot walks over bricks (top left), steps (top
right), inclines (bottom left) and side steps (bottom right) using the receding-
horizon nonlinear TO formulation proposed in Sec. IV-B using the learned
stability margin as many feasibility criterion.

The most stable foot position change along the gait cycle, so
the best contact position can be selected by computing the
margin over the whole cycle. Next section shows this can be
achieved through trajectory optimization.

B. Nonlinear Trajectory Optimization
To demonstrate the applicability of the proposed network

TO, we tested the formulation described in Section IV-B
using the ANYmal C robot in simulation (Gazebo) and
experimentally. We used a time horizon T of 3.0 s, a base
trajectory discretization time of ΔT = 0.2 s and the gait
parameters corresponding to a walk gait (with feet trajectory
nodes discretized at touch down and lift-off). This resulted
in an overall problem of 200 optimization variables and 500
constraints. Convergence took about 9 iterations using the
Interior Point nonlinear solver IPOPT [32].

On a 4-core/8-thread Intel Xeon(R) CPU E3-1505M v6 @
3.00GHz computer this corresponded to about 70ms/iter.
On the robot this fell to 40ms/iter. We ran the motion
planner in a receding-horizon fashion at the frequency of
1.0Hz. As can be seen in Fig. 5 and 8, the motion planner
enables the ANYmal C robot to adapt its body trajectory and
footsteps location to the incoming terrain information from
a 2.5-D height map with slopes and obstacles between 6 and
18 cm.

The benefit of measuring the stability of the robot using
the feasible region is particularly apparent in load-intensive
tasks or in scenarios that require the robot to take on complex
body configurations. In Fig. 7, for example, the ANYmal C is
asked to walk along a side step, causing its left feet to be on a
surface 18 cm above its right feet. In this case any simplified
model, such as the Single Rigid Body (SRB) used to generate
the motion shown in Fig. 7 (top), would require the CoM to
be in the middle between the left and right feet, exactly as
if they were all on the same flat surface. The feasible region
(as in Alg. 1), instead, considers the joint-torque limitations
of the robot and, for this reason, brings the CoM closer

to the most extended legs which are in a more favourable
configuration and therefore capable of carrying more body-
weight (Fig. 7, bottom). Compared to the motion planning
formulation based on the SRB model [33], the feasible region
also leads the robot to walk with a wider stance without the
need of any additional cost.

Fig. 9. Base acceleration trajectories resulting from two different RL poli-
cies for quadrupedal running trained without (blue) and with (red) a reward
function maximising the learned stability margin ml. This maximisation
term results in smaller base accelerations.

C. Reinforcement Learning
The proposed learned stability margin ml was also used

in [4] to train a terrain-aware footstep planning policy, a
domain adaptive tracking policy, and also an emergency
recovery policy. This work proposed the use of ml as a dense
reward function in order to assess the policies performance
for dynamic locomotion over uneven terrain. The work
further compared the influence of the stability margin on the
robot’s stance; a higher coefficient used with the stability
margin reward term resulted in a behaviour with wider
stance, whereas a smaller coefficient resulted in a preference
for narrower stance during stable phases of motion while
switching to wider stance during unstable phases.

In our experiments, we observed that introducing the
stability metric in the reward function enabled us to obtain
smoother motion trajectories. We trained two RL policies
which mapped the robot state information to desired joint
state of the ANYmal B robot for the task of following a
reference base velocity command. We trained a RL policy
using a simple reward function given by, L(8.0 × (0.75 −
ẋ)) where L(x) is the logistic kernel given by L(x) =
(e−x + 2 + ex)−1 and ẋ is the heading velocity of the base
represented in the base frame. We compared the learned
behaviour of this policy with that of another RL policy
obtained using a reward function comprising the previously
introduced logistic kernel term, further augmented using the
stability margin such that the RL policy attempts to track
the desired base reference velocity while also maximizing
the stability margin. As represented in the plot in Fig. 9, it
is evident that the policy obtained by introducing the stability
margin in the reward term results in smoother base motions



and smaller base accelerations (red) compared to the case
without margin maximization (blue). Furthermore, similarly
to what observed for the TO application (see Fig. 7), we
observed a preference for wider stance in the case of the
policy augmented with the stability margin. This is a direct
result of the stance allowing for a larger support region
thereby maximising the stability margin.

VI. CONCLUSION AND FUTURE WORKS

In this paper, we have proposed the signed distance
between the ICP and the closest edge of the feasible region
[17], [1] as a measure of dynamic stability for legged robots
in contact-rich scenarios and we have explained how to
leverage a NN to overcome the computation time limitations
of this measure. We have then reported the simulation and
hardware results on the full-sized ANYmal C robot of two
distinct applications in the fields of nonlinear TO and RL.
In the TO setting, in particular, we have demonstrated how
the learned stability margin can lead not only to the online
concurrent planning of base trajectories and contact locations
but also to the optimization of the body posture in order to
avoid unnecessary violation of the robot’s joint-torque limits.

We hope to advance this approach by including the learn-
ing of the joint-position limits [1] in such a way to embed
into the TO and RL settings an accurate description of the
body workspace.
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