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Motion Planning for Quadrupedal Locomotion:
Coupled Planning, Terrain Mapping and
Whole-Body Control

Carlos Mastalli’? Toannis Havoutis®

Abstract—Planning whole-body motions while taking into ac-
count the terrain conditions is a challenging problem for legged
robots since the terrain model might produce many local minima.
Our coupled planning method uses stochastic and derivatives-free
search to plan both foothold locations and horizontal motions due
to the local minima produced by the terrain model. It jointly
optimizes body motion, step duration and foothold selection, and
it models the terrain as a cost-map. Due to the novel attitude
planning method, the horizontal motion plans can be applied
to various terrain conditions. The attitude planner ensures the
robot stability by imposing limits to the angular acceleration.
Our whole-body controller tracks compliantly trunk motions
while avoiding slippage, as well as kinematic and torque limits.
Despite the use of a simplified model, which is restricted to flat
terrain, our approach shows remarkable capability to deal with
a wide range of non-coplanar terrains. The results are validated
by experimental trials and comparative evaluations in a series of
terrains of progressively increasing complexity.

Index Terms—legged locomotion, trajectory optimization, chal-
lenging terrain, whole-body control and terrain mapping

I. INTRODUCTION

Legged robots can deliver substantial advantages in real-
world environments by offering mobility that is unmatched
by wheeled counterparts. Nonetheless, most legged robots are
still confined to structured terrain. One of the main reasons is
the difficulty on generating complex dynamic motions while
considering the terrain conditions. Due to this complexity,
many legged locomotion approaches focus on terrain-blind
methods with instantaneous actions [e.g. 1, 2, 3]. These
heuristic approaches assume that reactive actions are enough to
ensure the robot stability under unperceived terrain conditions.
Unfortunately, these approaches cannot tackle all types of
terrain, in particular terrains with big discontinuities. Such
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difficulties have limited the use of legged systems to specific
terrain topologies.

Trajectory optimization with contacts has gained attention in
the legged robotics community [4, 5, 6]. It aims to overcome
the drawbacks of terrain-blind approaches by considering a
horizon of future events (e.g. body movements and foothold
locations). It could potentially improve the robot stability
given a certain terrain. However, in spite of the promising
benefits, most of the works are focused on flat conditions
or on simulation. For instance, these trajectory optimization
methods do not incorporate any terrain-risk model. This model
serves to quantify the footstep difficulty and uncertainty.
Nonetheless, it is not yet clear how to properly incorporate
this model inside a trajectory optimization framework. Reason
why terrain models are often used only for foothold planning
(decoupled approach) [e.g. 7, 8].

A. Contribution

To address challenging terrain locomotion, we extend our
previous planning method [9] in two ways. First, we propose a
novel robot attitude planning method that heuristically adapts
trunk orientation while still guaranteeing the robot’s stability.
Our approach establishes limits in the angular acceleration that
keep the estimated Centroidal Moment Pivot (CMP) inside the
support region. With our attitude planner, the robot can cross
challenging terrain with height elevation changes. It allows
the robot to navigate over stairs and ramps, as shown in
the experimental and simulation trials. Second, we propose
a terrain model (based on log-barrier functions) that robustly
describes feasible footstep locations. This work presents first
experimental studies on how both models influence the legged
locomotion over challenging terrain. The paper presents an
exhaustive comparison of the coupled planning described in
this work against a decoupled planning method proposed
in [10, 11]. For doing so, we integrate online terrain mapping,
state estimation and whole-body control. This article is an ex-
tension of earlier results [9] presented at the IEEE International
Conference on Robotics and Automation (ICRA) 2017.

The remainder of the paper is structured as follows: after
discussing previous research in the field of dynamic whole-
body locomotion (Section II) we briefly describe our decou-
pled planner method, which we use for comparison. Next,
we introduce our locomotion framework in Section III. We
describe our coupled planning method (Section IV) and how
the terrain model is formulated in our trajectory optimization.
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Section V briefly describes a controller designed for dynamic
motions. This controller improves the tracking performance
and the robustness of the locomotion by passivity-based con-
trol paradigm. In Section VI, VII we evaluate the performance
of our locomotion framework, and provide comparison with
our decoupled planner, in real-world experimental trials and
simulations. Finally, Section VIII summarizes this work.

II. RELATED WORK

In environments where smooth and continuous support is
available (floors, fields, roads, etc.), exact foot placement
is not crucial in the locomotion process. Typically, legged
robots are free to move with a gaited strategy, which only
considers the balancing problem. The early work of Marc
Raibert [12] crystallized these principles of dynamic loco-
motion and balancing. Going beyond the flat terrain, the
Spot and SpotMini quadrupeds are a recent extension of this
work. While SpotMini is able to traverse irregular terrain
using a reactive controller, we believe that (as there is no
published work) the footholds are not planned in advance.
Similar performance can be seen on the Hydraulically actuated
Quadruped (HyQ) robot, that is able to overcome obstacles
with reactive controllers [2, 13] and/or step reflexes [14, 15].

The main limitation of those gaited approaches is that
they quickly reach the robot limits (e.g. torque limits) in
environments with complex geometry: large gaps, stairs or
rubble, etc. Furthermore, in these environments, the robot often
can afford only few possible discrete footholds. Reason why it
is important to carefully select footholds that do not impose a
particular gaited strategy. Towards this direction, the DARPA
Learning Locomotion Challenge stimulated the development
of strategies that handle a variety of terrain conditions. It
resulted in a number of successful control architectures [7, 8]
that plan [16, 17, 18] and execute footsteps [19] in a pre-
defined set of challenging terrains. Roughly speaking, these
approaches are able to compute foothold locations by using
tree-search algorithms, and to learn the terrain cost-map from
user demonstrations [20].

Legged locomotion can also be formulated as an optimal
control problem. However, most works do not consider the
contact location and timings [e.g. 21, 22, 23] due to the
requirement of having a smooth formulation. The contact
location and timings are often planned using heuristic rules
with partial guarantee of dynamic feasibility [24, 25]. Using
these rules, it is possible to avoid the combinatorial complexity
and the excessive computation time of more formal approaches
([e.g. 26, 27, 28, 29]). Even though recent works have reduced
the computation time by a few orders of magnitude [e.g.
5, 6], they are still limited to offline planning and they require
a convex model of the terrain. In the following subsection,
we briefly describe our previous decoupled planning method,
which will be used as baseline to compare against our new
coupled planning method.

A. Decoupled planning

In our previous decoupled planning locomotion frame-
work [10, 11], the sequence of footholds was selected by

computing an approximate body path. It builds body-state
graph that quantifies the cost given a set of primitive actions
towards a goal. Then, it chooses locally the locations of the
footholds. Finally, it generates a body trajectory that ensures
dynamic stability and achieves the planned foothold sequence.
For that, we used two fifth-order polynomials to describe
the horizontal Center of Mass (CoM) motion. The stable
horizontal motion is computed using a cart-table model. For
more details the reader can refer to [10, 11].

III. LocoMOTION FRAMEWORK

In this section, we give an overview of the main components
of our locomotion framework (Section III-B), after a quick
description of the HyQ robot (Section III-A).

A. The HyQ robot

HyQ is a 85 kg hydraulically actuated quadruped robot [30].
It is fully torque-controlled and equipped with precision joint
encoders, a depth camera (Asus Xtion), a MultiSense SL
sensor and an Inertial Measurement Unit (MicroStrain). HyQ
measures approx. 1.0mx0.5mx0.98m (length x width x
height). The leg extension length ranges from 0.339-0.789 m
and the hip-to-hip distance is 0.75m (in the sagittal plane).
It has two onboard computers: a Intel i5 processor with Real
Time (RT) Linux (Xenomai) patch, and a Intel i5 processor
with Linux. The Xenomai PC handles the low-level control
(hydraulic-actuator control) at 1kHz and communicates with
the proprioceptive sensors through EtherCAT boards. Addi-
tionally, this PC runs the high-level (whole-body) controller at
250 Hz. Both RT threads (i.e. low- and high- level controllers)
communicate through shared memory. On the other hand, the
non-RT PC processes the exteroceptive sensors to generate the
terrain map and then compute the plans. These motion plans
are sent to the whole-body controller (i.e. the RT PC) through
a RT-friendly communication.

B. Framework components

Our locomotion framework is composed by three main
modules: motion planning, whole-body control, and mapping
and estimation (Fig. 1). The horizon optimization computes
the CoM motion and footholds to satisfy robot stability and to
deal with terrain conditions (Section IV-C). To handle terrain
heights, our attitude planner adapts the trunk orientation as
described in Section IV-Alb. We build onboard a terrain cost-
map and height-map which are used by the horizontal and
attitude planners, respectively (Section IV-B).

The whole-body controller has been designed to compliantly
track motion plans (Section V). It consists of a virtual model,
a joint impedance controller and a whole-body optimization.
The virtual model converts a desired motion into a desired
wrench. We additionally compensate for gravity to improve
motion tracking. Then, a whole-body optimization computes
the joint accelerations and the contact forces that satisfy all the
robot constraints (torque limits, kinematic limits and friction
cone). This output is mapped into desired feed-forward torque
commands. To address unpredictable events (e.g. slippage and
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Fig. 1: Overview of the locomotion framework. Horizontal optimization computes simultaneously the CoM and footholds
(x¢, %3 x? %2 ) given a terrain cost-map T. The attitude planner adapts the trunk orientation (R%, w?, &?) given a
terrain height-map H. This results in a stable motion that is tracked by the whole-body controller. The virtual model allows
us to compliantly track the desired CoM motion, and the controller computes an instantaneous whole-body motion (§*, A*)
that satisfies all robot constraints. The optimized motion is then mapped into desired feed-forward torques 7¢. To address
unpredictable events, we use a joint impedance controller with low stiffness which tracks the desired joint commands (q?, q;l).

Finally, a state estimator provides an estimation of the trunk pose and twist (Xcom, Xcom,w,w). It uses IMU and kinematics

(leg odometry), and stereo vision (visual odometry).

contact instability), we include a joint impedance controller
with low stiffness. Finally, the torque commands are tracked
by a torque controller [31].

The state estimation receives updates from proprioceptive
sensors (IMU, torque sensors and encoders) as well as from
exteroceptive sensors (stereo vision and LiDAR). Faster up-
dates (1 kHz) are obtained using leg odometry [32]. To correct
drift, we fused at low frequencies visual odometry: optical
flow and LiDAR registration [33]. The terrain mapping builds
locally the cost-map and height-map using the depth camera
(Asus Xtion). With this, we obtain an accurate trunk position
and terrain normals which are needed for the whole-body
controller.

IV. MOTION PLANNING

We consider locomotion to be a coupled planning problem
of CoM motions and footholds (see Fig. 2). First, we jointly
generate the CoM trajectory and the swing-leg trajectory using
a sequence of parametric preview models and the terrain
height-map (Section IV-A). Then, in Section IV-C, we opti-
mize a sequence of control parameters, given the terrain cost-
map, which defines a horizontal motion of the CoM.

Key novelties, with regards to previous work in [9], are the
inclusion of the terrain model in the optimization problem, as
a duality cost-constraint, and the development of an attitude
planning method. The terrain model allows us to navigate
in various terrain conditions without the need for re-tuning.
The attitude planner allows the robot to maintain stability
in terrain with different elevations. Our coupled planning
approach allows us to optimize step timing and to exploit
the simplified dynamics for foothold selection, an important
improvement from our previous above-mentioned decoupled
planning method.

User
Goals
Terrain

Cost- ,
ostmap Horizontal
Optimization

State
e
Trajectory
Generation

R —

Whole-body
Controller
N——

Optimal
Control

U

Terrain
8l Height-ma
9 P Optimal
Plan
Command S*
*

T

Fig. 2: Overview of our coupled motion and foothold planning
framework [9]. We compute offline an optimal sequence of
control parameters U* given the user’s goals, the actual
state sg and the terrain cost-map. Given this optimal control
sequence, we generate the optimal plan S*, that uses trunk at-
titude planning to adapt to the changes in the terrain elevation.
Lastly, the whole-body controller calculates the joint torques
T that satisfy friction-cone constraints. (Figure from [9].)

A. Trajectory generation

We generate the horizontal CoM trajectory and the 2D
foothold locations using a sequence of low-dimensional pre-
view models (Section IV-Ala). An optimization will provide
a sequence of control parameters for these models, that will
form the horizontal CoM trajectory. Not specifying the vertical
motion for the CoM allows us to decouple the CoM and
trunk attitude planning. In a second step, to achieve dynamic
adaptation to changes in the terrain elevation, we proposed
a novel approach based on the maximum allowed angular
accelerations (Section IV-Alb).

1) Preview model: Preview models are low-dimensional
(reduced) representations that are useful to describe and
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Fig. 3: A trajectory obtained from a low-dimensional model
given a sequence of optimized control parameters. The colored
spheres represent the CoM and CoP positions of the terminal
states of each motion phase. The CoP spheres lie inside the
support polygon (same color is used). Note that color indicates
the phase (from yellow to red), and the control parameters
are computed from the terrain cost-map in grey-scale. The
trunk adaptation is based on the estimated support planes in
each phase. Since the control parameters are expressed in the
horizontal frame (frame that coincides with the base frame but
aligned with gravity), the horizontal CoM trajectories and the
trunk attitude are decoupled. (Figure from [9])

capture different locomotion behaviors, such as walking and
trotting, and provide an overview of the motion [34, 35]. With
a reduced model we can still generate complex locomotion
behaviors and their transitions; furthermore, we can integrate
it with reactive control techniques. In the literature, different
models that capture the legged locomotion dynamics such as
point-mass, inverted pendulum, cart-table, or contact wrench
have been studied by [36, 37].

Our cart-table with flywheel model (preview model) allows
us to decouple the CoM motion from the trunk attitude'
(Fig. 3). To do not affect the Center of Pressure (CoP) stability
condition, we need to keep the CMP inside the support region.
With the cart-table model, the horizontal optimization com-
putes a sequence of control that keeps —within a safety margin—
the CoP inside the support polygon. The attitude planner
corrects the robot orientation in such a way that the CMP
position stays inside the support region. This is possible due
to the flywheel model allows us to predict the CMP position
given the trunk angular acceleration. Note that high centroidal
moments (e.g. due to high trunk angular acceleration) can
hamper the CoP stability condition e.g. causing that the CMP
moves out of the support polygon [38] and making the robot
losing its capability to balance.

a) Horizontal CoM motion: In our previous work [10],
we have observed that, in each locomotion phase, the CoP has
an approximately linear displacement (see Fig. 8 from [10]),

ie.
spf
p"(t) =Py + =, (1)

"n this work, with trunk attitude we refer to roll and pitch only.

where pff = (z#,y") € R? is the horizontal CoP position,
sp™ € R? the horizontal CoP displacement and 7" is the phase
duration. The (-)¥ apex means that the vectors are expressed
in the horizontal frame. As shown in [34], it possible, using
a cart-table model, to derive an analytical expression for the
horizontal CoM trajectory? whenever it is assumed a linear
displacement of the CoP:

_ opft
xA(t) = Bre?t + Boe ™! + pi! + —t )
where the model coefficients 3; 2 € R? depend on the actual
state s (horizontal CoM position x/ € R? and velocity x} €
R2, and CoP position), the CoM height h, the phase duration
T, and the horizontal CoP displacement dp:

Br=(xt' —py)/2+ (kT = op™)/(2wT),

B2 = (x| —pg)/2— (%'T —op™)/(2wT),

with w = /g/h and ¢ is the gravity acceleration.

b) Trunk attitude: The robot requires to adapt its trunk
attitude when the terrain elevation varies. As naive heuristic,
we could always try to align the trunk with respect to the
estimated support plane’. However, blindly following the
heuristics can lead to big changes in the orientation. In this
case big moments might move the CMP out of the support
polygon, thus invalidating the CoP condition for stability and
making the robot lose control authority. To address this issue,
we propose to limit the attitude adaptation by introducing
bounds that can guarantee the motion stability. For that, we
observe that, for a cart-table with flywheel model, the CMP
m € R3 is linked to the CoP p € R® [39, 38] as:

m=p+A 3)

where A is the shift resulting from applying moment to the
CoM:

Az = Tcom, /mga (4)

Ay = —Tcomyg /mga

and Teom,» Teom, are the horizontal components of the mo-
ment about the CoM. Then, thanks to the simplified flywheel
model we can also link these moments to angular accelerations
of the CoM, i.e. Tcom, = Zw. Re-writing Eq. (4) in vectorial
form we have:

 Twx g,

A (&)

mg

where 7 € R3*? is the time-invariant inertial tensor approxi-
mation (e.g. for a default joint configuration) of the centroidal
inertia matrix of the robot, and &, is z basis vector of the
inertial frame.

Under the flywheel assumption, we can keep the CMP inside
the support polygon by limiting the angular acceleration of
the trunk to w,,qz, Where this value is computed from a

2The CoM motion expressed in the horizontal frame. The horizontal frame
coincides with base frame but aligned with gravity.

3A course estimation of the supporting plane can be obtained fitting an
averaging plane across the feet in stance, with an update at each touch-down.
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safety margin r defined in the trajectory optimization (see
Section IV-C3) as:

(Iwmar) X éz

(6)

-
mg

With this, we can adapt the trunk attitude without affecting
the stability of the robot. To summarize we want to align
the trunk to the estimated support plane. However, the level
of alignment is limited by the maximum allowed angular
accelerations, in the frontal and the transverse plane (i.e. w;
and w, ), computed from Eq. (6) given a user-defined r margin.

We employ cubic polynomial splines to describe the trunk
attitude motion (frontal and transverse). The attitude adap-
tation can be achieved in more than one phase. Indeed, the
required angular displacement may not be possible without
exceeding the allowed angular accelerations.

c) Trunk height: We do not consider vertical dynamics
during the CoM generation, instead we assume that the trunk
height is constant throughout the motion. For non-coplanar
footholds, we use an estimate of the support area which
provides the height of the CoP point. With this, the sequence
of parameters expressed in the horizontal plane are still valid,
i.e. they do not affect the robot stability.

2) Preview schedule: Describing legged locomotion is pos-
sible using a sequence of different preview models — a
preview schedule. Using this, we can define different foothold
sequences by enabling or disabling different phases in our
optimization process, i.e. with phase duration equals zero
(T; = 0). In the preview schedule, we build up a sequence
of control parameters U from stance u®’ and foot-swing us®
phases as follows:

st/sw
1

U= |:11 qut/Sw:I ) (7N
in which the phases are defined as uj’ = [T; &pf]
stance phase where all legs are on the ground and uj* =
[T; opf Of!], swing phase, where at least one leg is in
swing. n is the number of phases, [ is the swing foot, T; is
the phase duration and Jf! is the relative foothold location
(i.e. foot-shift) described w.r.t. the stance frame (Fig. 4).
The stance frame is computed from a default posture of the
robot. Note that the foothold locations do not affect the CoM
dynamics since our model neglects the leg masses and the
angular dynamics (cart-table model). In addition, due to the
fact that the foot location is an optimization variable that
affects the shape of the polygon used as stability constraint
for the Zero Moment Point (ZMP), we have the product of
two optimization variables, hence the problem becomes non-
linear.

The horizontal CoM trajectory is computed from a sequence
of phase duration and CoP displacements {7}, dpH}, and its
height is kept constant according to the estimated support
polygon. Note that the trunk attitude adaption depends on
the safety margin and the footstep heights (computed from
the terrain height-map). In short, the CoM trajectory can be
represented as follows:

S={s1,-+-,sn} =1(s0,U,r) ®)

WORLD

Fig. 4: Sketch of different variables and frames used in our
optimization. The foot-shift 6f“*" is described w.r.t. the stance
frame, its bounds are defined by the foothold region (the pink
rectangle). The stance frame is calculated from the default
posture and expressed w.r.t. the base frame. (Figure modified
from [9].)

where the preview state s = [x X p a’] is defined by
the CoM position and velocity (x, %), CoP position p and the
stance support region o, which is defined by the active feet
described by U. For simplicity, we have described only the
initial preview states of each phase in Eq. (8). It is possible to
recover any state because f(-) describes the time-continuous
CoM dynamics. Using preview models it is important to
reduce the number of decision variables (through control
parameters).

We are focused on finding a minimum and safer sequence
of footsteps given a certain terrain condition. Therefore we
need to include the terrain model. A terrain model often is
non-convex and not necessary differentiable. If incorporated
in an optimization problem this can create plenty of local
minima, then stochastic optimization is a promising choice
as a solver (more details in Section IV-C). In the following
we will provide the description of the terrain model.

B. Terrain cost-map

Our terrain model is represented by the terrain cost-map.
This quantifies how desirable it is to place a foot at a
specific location. The cost value for each pixel in the map
is computed using geometric terrain features such as height
deviation, slope and curvature [40]. These values are com-
puted as a weighted linear combination of the individual
features T'(z,y) = w! T(z,y), where w and T(x,y) are the
weights and feature cost values, respectively. The total cost
value is normalized, where O and 1 represent the minimum
and maximum risk to step in, respectively. The weight vector
describes the importance of the different features. Each feature
is computed through piece-wise functions that resemble the
log-barrier constraint as described in the equations of Sec-
tion IV-B2, IV-B3. With this, we have extended the off-the-
shelf solver to address constrained problems (see Section IV-C
for more details). Below the log-barrier function for each
feature is described.
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1) Height deviation: The height deviation cost penalizes
footholds close to large drop-offs; for instance, this cost
is important for crossing gaps or stepping stones. In fact,
staying far away from large drop-offs is beneficial because
inaccuracies in the execution of footsteps can cause the robot
to step into gaps or banned areas. The height deviation feature
fn is computed using the standard deviation around a defined
neighborhood.

2) Slope: The slope reflects the local surface normal in a
neighborhood around the cell. The normals are computed using
Principal Component Analysis (PCA) on the set of nearest
neighbors. A high slope value will increase the chance of
slipping even in cases where the friction cone is considered,
e.g. due to inaccuracies in the friction coefficient or estimated
surface normal. Slope cost increases for larger slope values,
while small slopes have zero cost as they are approximately
flat. We consider the worst possible slope s,,,4, Occurs when
the terrain is very steep (approximately 70°)*.

We map the height deviation and slope features f into cost
values through the following piece-wise function:

0 f < fflat
Tf(mvy): _ln(l_%> fflat<f<fma:c
Tma:z: f 2 fmax

where ffiq¢ is a threshold that defines the flat conditions,
fmae the maximum allowed feature value, and T}, is the
maximum cost value. Note that f,,, defines the barrier of
the log function.

3) Curvature: The curvature describes the contact stability
of a given foothold location. For instance, terrain with mild
curvature (curvature between ¢ = 6 to ¢ = 9) is preferable to
flat terrain since it reduces the possibility of slipping, as it has
a bowl-like structure. Thus, the cost is equal to zero in those
conditions. On the other hand, high and low curvature values
represent a narrow crack structure (¢ > 9 = cpax) Or edge
structure (¢ < —6 = cnin) in which the foot can get stuck
in or can slip, respectively. We use the following piece-wise
function to compute the cost value from a curvature value c:

C(Z,Y)—Cmin , —
Tmaz —1In ((gmlyx)fcmm) Cerack < €< mald
T(z,y) = - +
e(z,y) 0 Critd < €< Cpina
Tmam ¢ < Ceracks
— - — + — —
where ceraer = =6, ¢, 50 = 6, ¢ g = 9 and cpax = 9. A

description of different curvature values can be found in [8].
The barriers are defined by c.rqcr and cpiza-

C. Horizontal trajectory optimization

The trajectory optimization computes an optimal sequence
of control parameters U* used for the generation of the hor-
izontal trajectories for the CoM (Section IV-A). We compute
the entire plan by solving a finite-horizon trajectory optimiza-
tion problem for each phase (similarly to a receding horizon
strategy). The horizon is described by a predefined number

4We heuristically defined this value based on our experience with the HyQ
robot and its geometry.

of preview schedules N with n phases (e.g. our locomotion
cycle (schedule) has 6 phases). Our method presents several
advantages to address challenging terrain locomotion. It en-
ables the robot to generate desired behaviors that anticipate
future terrain conditions, which results in smoother transitions
between phases. Note that the optimal solution U* is defined
as explained in Section IV-A2.

Compared with [34], our trajectory optimization method 1)
uses a terrain cost-map model for foothold selection, 2) defines
non-linear inequalities constraints for the CoP position, and
3) guarantees the robot stability against changes in the terrain
elevation. Additionally, in contrast to [34], we have defined
a single cost function that tracks desired walking velocities,
without enforcing the tracking of a specific step time and
distance.

1) Problem formulation: Given an initial state sg, we
optimize a sequence of control parameters inside a predefined
horizon, and apply only the optimal control of the current
phase. Given the desired user commands (trunk velocities), a
sequence of control parameters U* are computed solving an
unconstrained optimization problem:

U* = arg{rjnin ; w;g;(s0, U, 7). 9)

We solve this trajectory optimization problem using the
Covariance Matrix Adaptation Evolution Strategy (CMA-
ES) [41]. CMA-ES is capable of handling optimization prob-
lems that have multiple local minima and discontinuous
gradients. An important feature since the terrain cost-map
introduces multiple local minima and gradient discontinuity.
We use soft-constraints as these provide the required freedom
to search in the landscape of our optimization problem. The
cost functions or soft-constraints g;(sg, U,r) describe: 1)
the user command as desired walking velocity and travel
direction, 2) the energy, 3) the terrain cost, 4) a soft-constraint
to ensure stability (i.e. the CoP condition), and 5) a soft-
constraint that ensures the coupling between the horizontal
and vertical dynamics, where the horizontal dynamics are
described by Eq. (2).

2) Cost functions: We use the average walking velocity to
track the user velocity command. We evaluate the desired
velocity command for the entire planning horizon Nn as
follows:

H H\ 2
X — X
. H Nn 0
gvelocity - (Xdesired ) ) (10)

ST

where x . . € R? is the desired horizontal velocity, x4
is the terminal CoM position, xéq is the actual CoM position,
and Tj is the duration of i*" phase. Note that x]HVn is the latest
state that we consider in the planning horizon.

We use an estimated measure of the energy needed to
move the robot from one place to another which we call
the Estimated Locomotion Cost (ELC). Minimizing the ELC
reduces the energy consumption for traversing a given terrain.
Since joint torques and velocities are not available in our
optimization, we approximate the robot kinetic energy with a



MASTALLI et al.: MOTION PLANNING FOR QUADRUPEDAL LOCOMOTION: COUPLED PLANNING, TERRAIN MAPPING AND WHOLE-BODY CONTROL 7

single point-mass system (i.e. L = %m)’@). Thus, we compute
the total cost along the phases by:

Nn
Gele = ZELC(X)v (11)
=1

where ELC (%) £ ngd with d equal to the travel distance in
the xy plane.

3) Soft-constraints: To negotiate different terrains (Fig. 5),
we compute onboard the cost-map as described in Sec-
tion IV-B. Thus, given a foot-shift and CoM position, we can
obtain the cost at the correspondent foothold location (z,y)
as:

Jterrain = WTT(.'I,‘, y)a (12)

where w and T(x,y) are the weights and the vector of cost
values of every feature at the location (z, ), respectively. Note
that each feature is computed as explained in Section I'V-B,
and they define log-barrier constraints on the terrain. We use a
cell grid resolution of 2 cm, a half of the robot’s foot size. As
in [11], we demonstrated that this coarse map is a good trade-
off in terms of computation time and information resolution
for foothold selection. We cannot guarantee convexity in the
terrain costmap, which has to be considered in our optimiza-
tion process.

As mentioned in Section IV-A1b, in order to ensure a certain
motion freedom for the control of the attitude, we keep the
CoP trajectory inside a polygon that it is shrunk by a margin r
with respect to the support polygon. We use a set of non-linear
inequality constraints to describe the shrunk support region:

1 13)

L(o,r)" {p] >0,
where L(-) € R*3 are the coefficients of the I lines, o the
support region defined from the foothold locations, and p the
CoP position. Note that it is a nonlinear constraint as we
include the foothold positions as decision variables.

Due to the cart-table model assumes a constant height, the
consistency between the CoM and CoP motion is ensured by
imposing the following soft-constraint:

h=|x-pl (14)

where h is the cart-table height that describes the default
height of the robot, and x and p are the CoM and CoP posi-
tions, respectively. This soft-constraint penalizes the artificial
increment of the CoM horizontal position that appears when
the decoupling with the vertical motion becomes inaccurate
(see Eq. (2)).

We impose both soft-constraints (i.e. Eq. (13), (14)) only in
the initial and terminal state of each phase. This is sufficient
because the stability and the coupling will be guaranteed in
the entire phase too. Note that, for the stability constraint, the
support polygon remains a convex hull as the possible foothold
locations cannot cross its geometric center. We ensure this by
limiting the foothold search region, i.e. by bounding the foot-
shift (see Fig. 4). These soft-constraints are described using
quadratic penalization.

Fig. 5: A cost-map allows the robot to negotiate different
terrain conditions while following the desired user commands.
The cost-map is computed from onboard sensors as described
in Section IV-B. The cost values are continuous and repre-
sented in color scale, where blue is the minimum and red is
the maximum cost. (Figure from [9].)

V. WHOLE-BODY CONTROLLER

The tracking of the reference trajectories for the CoM
d x4 % ) the trunk orientation (R?,w?,&?) and the

(XCOm7 Xcom, com
swing motions (x?,,%% ) is ensured by a whole-body con-

sw?
troller (i.e. trunk controller). This computes the feed-forward
joint torques T¢, necessary to achieve a desired motion
without violating friction, torques (Tyqz,min) OF kinematic
limits (Qymaz,min). To fulfill these additional constraints we
exploit the redundancy in the mapping between the joint space
(€ R™) and the body task (€ RS). To address unpredictable
events (e.g. limit foot divergence in the case of slippage on
an unknown surface), an impedance controller computes in
parallel the feedback joint torques 7, from the desired joint
motion (q{,¢¢). This controller receives position/velocity set-
points that are consistent with the body motion to prevent
conflicts with the trunk controller. In nominal operations the
biggest contribution is generated by the feed-forward torques,
i.e. by the trunk controller.

This controller has been previously drafted in [5] and
subsequently presented in detail in [42]. Our controller extends
previous work on whole-body control, in particular [43, 44].
In this section we briefly summarize its main characteristics.
We cast the controller as an optimization problem, in which,
by incorporating the full dynamics of the legged robot, all of
its Degree of Freedoms (DoFs) are exploited to spread the
desired motion tasks globally to all the joints.

Although the usage of a reduced model (e.g. a centroidal
model) can be convenient for planning purposes, in control,
it is important to consider the dynamics of all the joints
when dealing with dynamic motions (as shown in Section VI).
In these cases, the effect of the leg dynamics is no longer
negligible and must be considered to achieve good tracking.

With this whole-body controller, the robot achieves faster
dynamic motions in real-time, see [42], when compared with
our previous quasi-static controller [15]. The block diagram
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of the trunk controller is shown in Fig. 1. A virtual model
generates the reference centroidal wrench W,,,,,, necessary
to track the reference trajectories. The problem is formu-
lated as a Quadratic Programming (QP) with the generalized
accelerations and contact forces as decision variables, i.e.
x = [@7, AT]T € R6T"+3n where n; is the number of end-
effectors in contact:

x* = argmin ||Wcom - Wgom”é + HXH%{

x=(4,2)

st. Mg+h=St+ JZA, (dynamics)
Jeg+J.q=0, (stance) (135)
RA <, (friction)
a<§<g, (kinematics)
F<MG+h-J"'a< 1, (torque)

where M is the joint-space inertial matrix, J. is the contact Ja-
cobian, h is the force vector that accounts Coriolis, centrifugal,
and gravitational forces, (R, r) describe the linearized friction

cone, ({,{q) are acceleration bounds defined given the current
robot conﬁguration [42], and (T, T) describe the torque limits.

The first term of the cost function (15) penalizes the
tracking error at the wrench level, while the second one is a
regularization factor to keep the solution bounded or to pursue
additional criteria. Both costs are quadratic-weighted terms.
All the constraints are linear: the equality constraints encode
dynamic consistency, the stance condition and the swing task.
While the inequality constraints encode friction, torque, and
kinematic limits. Then the optimal acceleration and forces x*
are mapped into desired feed-forward joint torques T}if e R"”
using the actuated part of the full dynamics. Finally, the feed-
forward torques T}lf are summed with the joint PD torques (i.e.
feedback torques ;) to form the desired torque command 7,
which is sent to a low-level joint-torque controller.

A terrain mapping module provides, as inputs to the whole-
body controller, an estimate of the friction coefficient p and
of the normal to the terrain n; at each contact location [45].
Finally a state estimation module fuses inertial, visual and
odometry information to get the current floating-base position
and velocity w.r.t. the inertial frame [33].

VI. EXPERIMENTAL RESULTS

To understand the advantages of our locomotion framework,
we first compare the decoupled and coupled approaches in
different challenging terrains (e.g. stepping stones, pallet,
stairs and gap). We use as test-cases for the comparison the
decoupled planner presented in [10]. After that, we show how
the modulation of the trunk attitude handles heights variations
in the terrain. Subsequently, we analyze the effect of the
terrain cost-map in our coupled planner. We study how dif-
ferent weighting choices result in different behaviors without
affecting significantly the robot stability and the ELC. Finally
we demonstrate the capabilities of our complete locomotion
framework (i.e. coupled planner, whole-body controller, terrain
mapping and state estimation) by crossing terrains with various
slopes and obstacles. All the experimental results are in the
accompanying video or in Youtube®.

Shttps://youtu.be/KI9x1GZWRWE

A. Motion planning: decoupled vs coupled approach

1) Decoupled planner setup: The swing and stance du-
ration are predefined since they cannot be optimized. The
footstep planner explores partially a set of candidate footholds
using the terrain-aware heuristic function [11]. These duration
are tuned for every terrain and, range from 0.5 to 0.7s
and from 0.05 to 1.4s for the swing and stance® phases,
respectively. However, it is not always possible to compute a
set of polynomial’s coefficients (CoM trajectory) that satisfies
the dynamic stability for some footstep sequences. Thus,
unfortunately, step and swing duration need to be hand-tuned
depending on the footstep sequence itself.

2) Coupled planner setup: The same weight values for the
cost functions are used for all the results presented in Table I
(i.e. 300, 30 and 10 for the human velocity commands, terrain,
and energy, respectively). We did not re-tune these weights
for a different experiment, as it was sometimes necessary
with the decoupled planner. This shows a greater generality
with respect to the decoupled planner. We add a quadratic
penalization, when the terrain cost T(z,y) is higher then 0.8
(i.e. 80% of its maximum value).

For this kind of problems, it is not trivial to define a
good initialization trajectory (i.e. to warm-start the optimizer).
However, since our solver uses stochastic search, this is not
so critical and we decided not to do it. We used the same
stability margin and angular acceleration (as in Section VI-B)
for the trunk attitude planner, and the horizon is N = 1, i.e.
1 locomotion cycle or 4 steps’.

3) Increment of the success rate: The foothold error is on
average around 2 cm, half than in the decoupled planner case.
Note that these results are obtained with the state estimation
algorithm proposed in [33]. The coupled planner dramatically
increases the success of the stepping stones trials to 90%;
up over 30% with respect to the decoupled planner [10]. We
define as success when the robot crosses the terrain, e.g. it does
not make a step in the gap, and does not reach its torque and
kinematic limits. In Table I we report the number of footholds,
the average trunk speed, and the ELC for simulations made
with our coupled and decoupled planners in different challeng-
ing terrains. The coupled planner also increases the walking
velocity of least 14% and up to 63%, while also modulating
the trunk attitude. The number of footholds is also reduced of
14% on average. Jointly optimizing the motion and footholds
reduces the number of steps because it considers the robot
dynamics for the foothold selection. Note that the trunk speed
and the success rate increased even with terrain elevation
changes (e.g. gap and stepping stones). The ELC is higher
for our coupled planner; however, this is an effect of higher
walking velocities and of the tuning of the cost function. This
is expected even if we normalized the ELC with respect to
the walking velocity. Note that as velocity increases the kinetic
energy rises quadratically with a consequent affect on the ELC.
We also found that the tuning of the ELC cost does not affect
the stability and the foothold selection.

0In this work, with stance phase, we refer to the case when the robot has
all the feet on the ground.
7As mentioned early, we define 6 phases which 2 of them are stance ones.
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TABLE I: Number of footholds, average walking speed and normalized ELC for different challenging terrains without changes
in the elevation for our coupled (Coup.) and decoupled (Dec.) planners. We normalize the ELC with respect to the walking

velocity to easily compare results across different motion speeds. All the results are computed from simulations.

# of Footholds

Avg. Speed [cm/s]

ELC / speed [s/cm]

Terrain Coup. Dec. Ratio Coup.  Dec. Ratio Coup. Dec.  Ratio
S. Stones 31 38 0.82 11.16  6.29 1.77 1320 1143 1.15
Pallet 35 36 0.97 9.23 6.92 1.33 1321 1170 113
Stairs 21 23 0.91 1279 1126  1.14 1022 6.24 1.63
Gap 18 24 0.75 1276  9.00 1.42 9.05 6.84 1.32

Fig. 6: Snapshots of experimental trials used to evaluate the performance of our trajectory optimization framework. (a) crossing
a gap of 25cm length while climbing up 6 cm. (b) crossing a gap of 25 cm length while climbing down 12 cm. (c) crossing a
set of 7 stepping stones. (d) crossing a sparse set of stepping stones with different elevations (6 cm). To watch the video, click

the figure.

4) Computation time: An important drawback of including
the terrain cost-map is that it increases substantially the com-
putation time. In fact for our planners, this increases from 2-
3s to 10-15min, for more details about the computation
time of the decoupled planner see [11]. The main reason is
that we use a stochastic search which estimates the gradient
(see [41]). Instead, for the decoupled planner, we use a tree-
search algorithm (i.e. Anytime Repairing A* (ARA*)) with a
heuristic function that guides the solution towards a shortest
path, not the safest one, which allows us to formulate the CoM
motion planning through a QP program. For more details about
the footstep planner, used in the decoupled planning approach,
see [11].

5) Crossing challenging terrains: Trunk attitude adaptation
tends to overextend the legs, especially in challenging terrains,
as bigger motions are required. To avoid kinematic limits, we
define a foot search region. This ensures kinematic feasibility
for terrain height difference of up to 12 cm (coupled planner),
in Fig. 6a, b. Note that in the decoupled case we had to define
a more conservative foot search region (i.e. in the footstep
planner) than in the coupled one, making very challenging to

cross gaps or stepping stones with height variations. Indeed,
crossing the terrain in Fig. 6a-d is only possible using the
coupled planner since we managed to increase the foothold
region from (20 cmx23.5 cm) to (34 cmx28 cm). Note that the
decoupled planning requires smaller foothold regions due to
the fact that only considers the robot’s kinematics.

For all our optimizations, we define a stability margin of
r =0.1m (introduced in Section IV-Alb) which is a good
trade-off between modeling error and allowed trunk attitude
adjustment.

B. Trunk attitude planning

The cart-table model neglects the angular dynamics and
therefore cannot be used to control the robot’s attitude. How-
ever, with a flywheel extension as proposed for our attitude
planning approach, we could generate stable motions while
changing the robot attitude (e.g. stair climbing as in Fig. 7).
In this section, we showcase the automatic trunk attitude
modulation during a dynamic walk on the HyQ robot (Fig. 8a).


https://youtu.be/KI9x1GZWRwE#t=01m24s
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Fig. 7: An optimized sequence of control parameters for
stair climbing. As in previous experiments, we use the same
optimization weight values for the entire course of the motion.
The step heights are 14cm. To watch the video, click the
figure.

To experimentally validate the attitude modulation method,
we plan a fast® dynamic walk with a trunk velocity of 18 cm/s,
and an initial trunk attitude of 0.17 and 0.22 radians in roll
and pitch, respectively. We do not use the terrain cost-map to
generate the corresponding footholds, thus the resulting feet
locations come from the dynamics of walking itself, while
maximizing the stability of the gait. We compute the maximum
allowed angular acceleration given the trunk inertia matrix of
HyQ, from Eq. (6), which results in 0.11rad/s?> as the max-
imum diagonal element. The trunk attitude planner uses this
maximum allowed acceleration to align the trunk and support
plane through cubic polynomial splines ( Section IV-Alb).

The resulting behavior shows the HyQ robot successfully
walking while changing its trunk roll and pitch angles. The
trunk attitude planner adjusts the roll and pitch angles given
the estimated support region at each phase. Fig. 8b shows
the CoM tracking performance for an initial trunk attitude of
0.17rad and 0.22rad in roll and pitch, respectively. Fig. 8c
shows that the entire attitude modulation is accomplished in
the first 6 phases (i.e. one locomotion cycle or four steps with
two support phases). Because our attitude planner keeps the
CMP inside the support region, the HyQ robot successfully
crosses terrains with different heights as shown in Fig. 6a-d.
The stability margin is the same for all the experiments in this
paper (r = 0.1 m).

C. Motion planning and terrain mapping

Different weighting choices on the terrain cost-map produce
different behaviors, as described by Eq. (12). For simplicity,
we analyze the effect of these weights in gap crossing. We
observe two different plans which are only influenced by the
terrain weight in the cost function (Fig. 9). Strongly penalizing
the terrain cost-map results in the robot not being able to
cross the gap due to its kinematic limits (Fig. 9(bottom)).
By reducing the terrain weight, we observe that the coupled
planner selects footholds closer to the gap border, which
allows the robot to cross the space (Fig. 9(fop)). The terrain
weight mainly influences the foothold selection, and does not
influence the stability or the ELC. Finally, we observed that
the computational cost is not affected by the terrain geometry.

8Compared to the common walking-gait velocities of HyQ.
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Fig. 8: (a) Dynamic attitude modulation on the HyQ robot. The
initial trunk attitude is 0.17 and 0.22 radians in roll and pitch,
respectively. (b) Body tracking when walking and dynamically
modulating the trunk attitude. The planned CoM (magenta)
and the executed trajectory (white) are shown together with
the sequence of support polygons, CoP and CoM positions.
Note that each phase is identified with a specific color. (c) A
lateral view of the same motion shows the attitude correction
(sequence of frames), and the cart-table displacement. We use
the RGB color convention for drawing the different frames. In
(b)-(c) the brown, yellow, green and blue trajectories represent
the Left-Front (LF), Right-Front (RF), Left-Hind (LH) and
Right-Hind (RH) foot trajectories, respectively.

D. Whole-body control, state estimation and terrain mapping

The whole-body controller successfully tracks the planned
motion without violating friction, torques or kinematics con-
straints Fig. 10(bottom). A key aspect is that our controller
follows the desired wrenches computed from the motion plan,
giving priority to the above constraints. This is important
because our coupled planner does not consider the non-
coplanar contact condition and friction cone (since the used
cart-table model that neglects them). With this approach, the
robot can (1) climb in simulation ramps up to 20 degrees
in similar friction conditions to real experiments (y = 0.7)
and (2) handle unpredictable contact interactions as shown
in Fig. 7.

The terrain surface normals are computed online from vi-
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3.0

Fig. 9: The effect of changing terrain weight values when
crossing a gap of 25 cm. The cost-map is computed only using
the height deviation feature (top); the red points represent the
discretization of the continuous cost function (1 cm). The cost
values are represented using gray scale, where white and black
are the minimum and maximum cost values, respectively. A
higher value in the terrain weight describes a higher risk for
foothold locations near the borders of the gap. An appropriate
weight allows the robot to cross the gap (middle). In contrast,
an increment of 200% in the weight penalizes excessively
footholds close to the gap and as result the robot cannot cross
the gap as kinematic limits are exceeded (bottom).

sion. The friction coefficient used in these trials (i.e. simulation
and experiments) is 0.7, which is a conservative estimate
of the real contact conditions. Fig. 11 shows the tracking
performance against errors in the state estimation and terrain
mapping. The tracking error is mainly due to low-frequency
corrections of the estimated pose.

VII. DISCUSSION
A. Motion planning: decoupled vs coupled approach

Coupled motion and foothold planning include dynamics in
foothold selection. This is critical to both increase the range
of possible foothold locations and to adjust the step duration.
Both of these parameters allow the robot to cross a wider range
of terrains. We noted that the coupled planner handles different
terrain heights more easily because of the joint optimization
process. Crossing gaps with various elevations exposed the
limitation of decoupled methods, since this is more prune to
hit the kinematic limits (see Fig. 6a). However, an important
drawback of coupled foothold and motion planning is the
increase in computation time compared to decoupled planning.
It is possible to reduce the computation time by describing the
foothold using integer variables [25, 5], but this would limit
the number of feasible convex regions. Instead the coupled

planning uses a terrain model that considers a broader range
of challenging environments because of the “continuous” cost-
map. In any case, the computation time remains longer for
coupled planning as we presented in [5].

Optimizing the step timing has not shown a clear benefit
in our experimental results. We argue that step timing is
important to find feasible solutions when there is a small
friction coefficient or the risk of reaching torque limits, i.e. a
slower motion is needed to satisfy both constraints. However,
the cart-table model does not consider these constraints, which
in practice makes the time optimization not useful for reduced
dynamics.

We have tested, in simulation, our locomotion framework
up to 208 steps on flat terrain (Fig. 12) and up to 50 steps in
non-flat terrain (Fig. 7). The modeling errors on the cart-table
with flywheel approximation are easily handled by the whole-
body controller. In addition, the swing trajectory are expressed
in the base frame, so errors in the state estimation affect
little the stability. However, unexpected events can compro-
mise the stability (e.g. unstable footsteps, moving obstacles,
state estimation errors as a result of slippage, etc) and re-
planning might be needed. According to our experience, it is
recommended to optimize at least one cycle of locomotion
since we do not know the CoM travel direction and velocity
in an individual step. For all the experiments, we plan 4 steps
ahead and it was not needed a longer horizon. We planned
6 and 8 steps ahead without any significant improvement in
the motion. To compute the whole motion, we solve different
trajectory optimization problems in receding fashion.

B. Trunk attitude planning

The cart-table model estimates the CoP position, yet it
neglects the angular components of the body motion that can
lead to inaccuracies in the CoP estimation. This can affect
the stability particular when there is a change in height e.g.
climbing/descending gaps or stairs, crossing uneven stepping
stones, etc. To systematically address these effects without
affecting the stability, a relationship was obtained between the
torques applied to the CoM and the displacement of the CoP.
Later, we connected the stability margin by assuming a time-
invariant inertial tensor approximation of the inertia matrix.
Experimental results with the HyQ robot validated this method
for challenging terrain locomotion. The method developed in
this paper can be applied to other legged systems, such as
humanoids.

Our attitude planner does not aim to control angular mo-
mentum, instead we propose 1) to use a heuristic for trunk
orientation and 2) to maintain the robot stability under mild
assumptions. To handle the zero-dynamics instabilities (ex-
plained in [46]), our whole-body controller tracks the desired
robot orientation computed by the trunk attitude planner.
However, we argue that a more effective robot attitude planner
will require to consider the limb kinematics and torque limits
(full-dynamics), and to account for future events (planning).
It is clearly crystallized in the cat-falling motion, when the
momenta conservation defines a nonholonomic constraint on
the angular momentum (for more details see [47]). This is
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Fig. 10: Crossing a terrain that combines elements of the previous cases; first a ramp of 10 degree, then a gap of 15cm and
finally a step with 15 cm height change. Execution of the planned motion with the HyQ robot (top). Visualization of the terrain
cost-map, friction cone and Ground Reaction Forces (GRFs) (bottom). The color for the friction cone and GRFs are magenta

and purple, respectively. To watch the video, click the figure.
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Fig. 11: HyQ crossing a terrain that combines elements of
all previous cases. (Top): CoM tracking performance, desired
(blue) and executed (black) motions. (Bottom): applied torque
command along the course of the motion. At ¢ =14 sec, the
planned motion produced a movement that reached the torque
limits; however, the controller applies a torque command
inside the robot’s limits. In fact, the tracking error increases
at approximately x =1.25m, and is reduced in the next steps.

the reason why recent works have been focused on efficient
full-body optimization (e.g. [23, 48, 49].

C. The effect of the terrain cost-map

Considering the terrain topology increases the complexity
of the trajectory optimization problem. Moreover, optimizing
the step duration introduces many local minima in the problem
landscape. To address these issues, a low-dimensional param-
eterized model is used which allows us to use stochastic-based
search. Note that stochastic-based search becomes quickly in-
tractable when the problem dimension increases. Even though
our problem is non-convex, we reduce the number of required
footholds by an average of 13.75% compared to our convex
decoupled planner (Table I). The terrain cost-map increases

Fig. 12: Optimizing 208 steps from 52 trajectory optimization
problems. In each optimization problem the step timing,
foothold locations and CoM trajectory for 4 steps in advance
with different velocity commands are computed. The color
describes different step phases of the planned motion.

the robustness of the planned motion. Indeed, the selected
footsteps are far from risky regions, and this is very important
to increase robustness because tracking errors always produce
variation on the executed footstep.

D. Considering terrain with slopes

Higher walking speed increases the probability of foot-
slippage. When one or more of the feet slip backwards,
or when a foot is only slightly loaded, might result in a
poor tracking. Both events are more likely to happen in a
terrain with different elevations due to errors in the state
estimation or noise in the exteroceptive sensors. Including
friction-cone and foot unloading / loading constraints, in the
whole-body optimization, has been shown to help mitigate the
poor tracking. We demonstrated experimentally that is possible
to navigate a wide range of terrain slopes without considering
the friction cone stability in the planning level (only at the
controller level).
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E. Terrain mapping and state estimation

Estimating the state of the robot with a level of accuracy
suitable for planned motions is a challenging task. Reliable
state estimation is crucial, as accurate foot placement directly
depends on the robot’s base pose estimate. The estimate is also
used to compute the desired torque commands through a vir-
tual model. The major sources of error for inertial-legged state
estimation are IMU gyro bias and foot slippage. These produce
a pose estimate drift, which cannot be completely eliminated
by the contact state estimate [32] (or with proprioceptive
sensing). Pose drift particularly affects the desired torques
computed from the whole-body optimization. To eliminate
it, we fused high frequency (1kHz) proprioceptive sources
(inertial and leg odometry) with low frequency exteroceptive
updates (0.5Hz for LiDAR registration, 10Hz for optical
flow) in a combined Extended Kalman Filter [33]. We noticed
that the drift accumulated, in between the high frequency
proprioceptive updates and the low frequency exteroceptive
updates, affected the experimental performance. In practice,
to cope with this problem, we reduced the compliance of our
whole-body controller (by increasing the proportional gains).

VIII. CONCLUSION

In this paper, we presented a new framework for dynamic
whole-body locomotion on challenging terrain. We extended
our previous planning approach from [9] by modeling the
terrain through log-barrier functions in the numerical optimiza-
tion. In addition, we proposed a novel robot attitude planning
algorithm. Using this, we could optimize both the CoM motion
and footholds in the horizontal frame, and allow the robot to
adapt its trunk orientation. We demonstrated in experimental
trials and simulations that the assumptions on the attitude
planner avoided instability under significant terrain elevation
changes (up to 12 ¢m). We compared coupled and decoupled
planning and highlighted the advantages and disadvantages of
them. In our test-case planners, we used the same method
for quantifying the terrain difficulty (i.e. terrain cost-map).
We showed that reduced models for motion planning (such
as cart-table with flywheel) together with whole-body control
are still suitable for a wide range of challenging scenarios.
We used the full dynamic model only in our real-time whole-
body controller to avoid slippage, and hitting torque and
kinematic limits. The online terrain mapping allowed our
controller to avoid slippage on the trialled terrain surfaces.
We presented results, validated by experimental trials and
comparative evaluations, in a series of terrains of progressively
increasing complexity.
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