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Abstract— Long-range locomotion planning is an important
problem for the deployment of legged robots to real scenarios.
Current methods used for legged locomotion planning often do
not exploit the flexibility of legged robots, and do not scale
well with environment size. In this paper we propose the use
of navigation meshes for deployment in large-scale, potentially
multi-floor sites. We leverage this representation to improve
long-term locomotion plans in terms of success rates, path costs
and reasoning about which gait-controller to use when. We
show that NavMeshes have higher planning success rates than
sampling-based planners for a fraction of the construction time
(e.g. 2x success rate with 60x lower construction time), as well
as finding 30% lower-cost paths, while this performance gap
further increases when considering multi-floor environments.
We present both a procedure for building controller-aware
NavMeshes and a full navigation system that adapts to changes
to the environment. We demonstrate the capabilities of the
system in simulation experiments and in field trials at a real-
world oil rig facility.

I. INTRODUCTION

Legged robots are capable of locomotion using a variety
of gaits. For example, quadruped robots can switch their
locomotion mode to walk, trot, bound, etc. according to
the terrain at hand. This diversity of ways to navigate envi-
ronments renders legged robots unmatched for overcoming
varied terrain. However, it comes at the cost of reasoning
about terrain features and choosing the appropriate gait to
use for each particular area. Even though the choice of gait-
controller has been included in recent locomotion planning
methods [1], it is still not clear which map representations and
planning methods are most suitable to the task—especially
for large-scale environments.

In this paper we present our approach to efficient and
reliable map representation for long-range legged robot loco-
motion planning, building on navigation meshes (NavMeshes)
[2], [3], [4]. Our approach was developed having in mind
applications of inspection and monitoring of large industrial
facilities, e.g. power plants, offshore wind and oil & gas
platforms, or nuclear facilities. In this context we assume an
approximate map of the environment to be known in advance
or that the robot can be teleoperated to build up a map of
the facility before autonomous deployment.

NavMeshes are popular map representations within com-
puter game AI [5], where they are used to plan paths for
agents over large-scale environments such as buildings or
open-worlds. Such large-scale planning methods are important
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Fig. 1: Top to bottom: point cloud of an oil rig with color-
coded curvature, gait-controller choice (gray for trotting and
dark blue for walking), navigation mesh (light blue for trotting
and red for walking).

for autonomous long-term robot deployment. Reasoning about
the choice of gait is another requirement for large-scale
planning in the context of legged locomotion. For example,
going through a building following a small-distance path
might involve the use of slow walking gaits to climb stairs
and navigate narrow corridors. In contrast, going around the
same building on a longer-distance route could be a faster
alternative using a speedy trotting gait.

In this paper we present methods for both building and
using gait-aware navigation meshes for legged locomotion at
such scales. Our contributions are:

• An automated method to generate navigation meshes of
large-scale environments for legged robots with multiple
gait-controllers.

• A complete system to navigate large-scale sites while
reasoning (and switching between) controllers, using
NavMeshes together with local planners.

• An evaluation of the advantages of navigation meshes
for long-range planning.

• A detailed comparison between traditional robotics
methods such as PRMs and RRTs, and NavMeshes,
demonstrating how NavMeshes overall outperform these
methods, especially when planning over multiple floors.

We evaluate our system both in simulation experiments and
on multiple real-robot field trials at a realistic oil rig facility,
used for personnel training exercises.



II. RELATED WORK

A large number of map representations have been used
for robot locomotion planning. Probabilistic Roadmaps [6],
occupancy grids [7], octree-encoded occupancy grids [8] and
heightmaps [9], are a few of the popular map representations
for this purpose. These are also popular for legged robot
locomotion planning. For example, [10] uses search on
occupancy grids and [11], [1] on heightmaps.

While these representations are suited to short-term plan-
ning, they do not scale well to large (e.g. multi-floor, city-
wide) environments. For this reason, in long-term robot
deployments to large office environments researchers have
used manually designed topological graphs [12], [13]. Related
map representations for long-term robot deployments include
architectural floor plans [14], hand-drawn floor plans [15],
sketches [16] and 3D vector maps [13]. Also for long-
term planning, Probabilistic Roadmaps (PRMs) [6] have
been used for legged robot locomotion planning [17] and in
combination with Reinforcement Learning methods for long-
term mobile robot navigation [18], [19]. Outside of robotics,
[20] uses a database of CAD models for each floor and
building of a university for navigation planning. While this
representation allows for considerably larger-scale planning
than the previous, it comes at the cost of intense manual labor
in terms of CAD drawing, labeling of stairs and elevators,
computing relative distances between floors and buildings,
etc.

Our work targets long-term and large-scale robot deploy-
ments, for quadruped robots in particular. We specifically
focus on building a system for fast path-finding in large-scale,
potentially multi-level environments such as industrial oil
rigs and other hard-to-access sites [1]. Except for PRMs, the
map representations we have mentioned are either single-floor
or manually designed—which could lead to imprecise maps
or large manual work requirements. To account for multi-
level large-scale facilities while avoiding manual labeling we
use point cloud acquisition and automatic navigation-mesh
construction from point clouds. The navigation mesh [2], [21],
[3], [4] is a map representation that is popular in computer
games due to its scalability and fast computation time for path-
finding. Computation time is critical in game AI since often
paths have to be found for hundreds or thousands of agents at
fast rates [22]. The Recast toolkit for navigation meshes [21],
for example, is used in several commercial games [23] and in
the Unity engine [5]. Navigation meshes represent the world
as a set of polygons and a graph representing traversability
between them. Path-finding consists in a search over this
compact graph. A comparison of navigation mesh methods
is made in [4].

Due to the requirements of computer games, navigation
meshes also usually encode per-polygon labels for the possible
modes of locomotion and the costs of different areas of a
map (e.g. an agent could swim over a river or travel to the
closest bridge). This functionality is also close to the reality
of legged robot locomotion—which is characterized by a
large set of possible gaits [24] and controllers specialized for
different kinds of terrain [1]. In this paper we use navigation
meshes with controller-choice annotations to make long-term

plans aware of the real cost of traversing different regions,
and hence obtain paths of low global cost. We automatically
compute these controller annotations by local 3D point cloud
features similar to the heightmap-based work in [25].

III. DEFINITIONS

1) Gait controller: In this paper a “gait controller” is
any method that controls the full-body motion of a robot to
achieve a desired velocity, or goal position, of a robot’s base.
We consider a setting where multiple controllers are available
for a given robot, specialized to different kinds of terrain. We
represent this set of controllers by M = m1, ...,mM , where
M is the number of available controllers.

2) Walkable environment: We use the concept of a “walka-
ble environment” as defined in the navigation-mesh literature
[4]. A “walkable environment” W is a set of triangles that
are traversable by an agent, i.e. robot. For the purpose of this
paper, each triangle t is a tuple of three points and a label,
t = (p1, p2, p3,m), where p1, p2, p3 ∈ R3 and m ∈ M.
The label identifies the preferred choice of controller to
be used when the robot’s projected COM lies within the
triangle. These triangles represent the surfaces traversable
by the agent (i.e. robot). For typical legged robots this will
consist of triangles on the floor, stairs and other traversable
surfaces. Surfaces that are more inclined than what is possible
by the robot’s capabilities will not be part of the walkable
environment.

3) Multi-layered environment: Intuitively, a “multi-layered
environment” is an environment with walkable areas at
multiple heights, e.g. a multi-floor building. More formally, a
walkable environment W is multi-layered when the projection
of its triangles to a horizontal plane leads to intersections [4].

4) Navigation mesh: A navigation mesh is a tuple N =
(W,G): it consists of a walkable environment W and an
undirected graph G representing the possibility to navigate
between adjacent triangles in W .

IV. METHOD

The overview of our proposed system is shown in Fig. 2. It
uses high-level planning based on NavMeshes together with
local-map planning to navigate large environments, while
allowing for online adaptation using virtual obstacles. We
will go through the process of building NavMeshes, and the
content of each of the blocks in the following sections.

A. Building large controller-annotated environment meshes
Before we can build a gait-aware NavMesh we require

a triangular mesh where each triangle is annotated with a
gait controller choice. We will now explain the process,
summarized in Fig. 3, to obtain such an annotated mesh.
The method uses either a CAD model of the environment
or a point-cloud acquired on-site. We will now describe the
point-cloud-based method.

1) Point cloud acquisition: We obtain point clouds of
whole multi-layered facilities by successive laser-scanning
and registration using a portable device. In principle any
mapping device can be used for this step, including the on-
board robot SLAM system, as long as the cloud captures the
walkable environment, i.e. floor, stairs surfaces, etc.
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Fig. 3: Our procedure for generating gait-controller-aware navigation meshes from large point clouds.

2) Per-point controller assignment: We start by computing
normals and curvature for all points in the point cloud. After,
in a similar way to [25], for each point we compute the
local maximum of curvature cmax in a spherical neighborhood
around the point. We use the radius of the smallest sphere
which encloses the robot. While we found that curvature
information is sufficient to choose between our robot plat-
form’s controllers, other features such as roughness, slope or
height-differences could be used [25] as appropriate for the
robotic platform and controller choices available.

In our case we assign a trotting-gait controller, specialized
for flat terrain, to all points where cmax is below a threshold,
and otherwise assign a walking-gait controller which uses
vision for foot placement. The output of this step is therefore
a point-cloud annotated with a choice of controller (i.e. a
unique number identifying a controller).

3) Mesh reconstruction: We reconstruct a 3D triangular
mesh from the original point cloud using the Ball-Pivoting
algorithm [26]. While other methods are openly available [27]
we found that Ball-Pivoting produced good results for large-
scale environments. We recommend the interested reader to
see [28] for a comparison of this and alternative open-source
mesh reconstruction methods for robotics applications.

4) Per-polygon controller assignment: The final step in
the procedure is to assign a controller choice to each triangle
of the reconstructed mesh. To achieve this we project the
point-cloud controller-annotations back to mesh triangles. For
each triangle t in the mesh we obtain all the points in the
annotated point cloud P that fall within a distance dmax of
t. We then run a voting procedure: we count the number of
points which support each of the controllers and assign the
maximally-voted controller to triangle t.

When a CAD model of the environment is available, we
uniformly sample the CAD model to obtain a dense point
cloud. We then run the same cloud-annotation and cloud-to-
mesh annotation projection procedure, described above, to
obtain a controller-annotated mesh.

B. Building multi-controller navigation meshes

We use the Recast toolkit [21] to generate navigation
meshes from the annotated mesh. Recast starts from a
triangular mesh as input, and produces a navigation mesh
using the following procedure:

1) Voxelize the polygons. This generates a multiple-height
heightfield from the triangular mesh. It consists of
multiple spans for each cell on the horizontal plane,
representing the occupied regions running vertically on
that cell.

2) Annotate walkable space from solid voxels. This
filters out voxels where a cylindrical approximation
of the robot cannot stand based on surface inclination
and vertical clearance. The heightfield representation
obtained by the previous step is particularly suited for
this stage since identifying voxels on floor surfaces and
with enough ceiling-clearance is fast.

3) Compute a distance field in voxel space. This is
the distance of each walkable voxel to the closest
non-walkable voxel on the heightfield, or to a voxel
annotated with a different controller-choice.

4) Run a “watershed partitioning” algorithm on the dis-
tance field. This basically achieves segmentation of the
the walkable voxels in order to obtain simple polygons
that do not overlap, and are connected in saddle
points of the distance field (usually corresponding to
doors, passages and other meaningful locations). This
is inspired by [29]. We encourage the interested reader
to refer to that publication for a detailed and intuitive
explanation of the method.

5) Compute polygons representing the contours of the
segmented voxel regions. This is done by tracing
the contours of each region and approximating it
with polygons through the Ramer-Douglas-Peucker
algorithm [30].

6) Triangulate the polygons and build triangle connectivity.
This is done to build the connectivity graph G used for



planning in the navigation mesh.
For a more in-depth overview of the design choices and

implementation, we refer the reader to [2].
When applied to large-scale point-cloud-estimated meshes,

the previous procedure generates a considerable number of
unconnected (inaccessible) walkable areas—such as the top
of a lamp post, the top of ceiling rails, or areas where point
cloud noise is high (e.g. far away from the laser scans). This
usually makes visualization of the navigation meshes more
difficult and needlessly increases the size of the navigation
mesh [3]. To avoid this we extend the previous procedure with
an additional post-processing step: we remove all NavMesh
triangles to which there exists no path to a reference point
that is known to be accessible by the robot (e.g. point in a
large room, or the “base station” of the robot).

The output of the whole process is a clean NavMesh N that
represents the walkable environment, and is annotated with
a controller choice for each triangle. Each controller choice
can be given a different weight, which scales the distance
costs of the respective triangles in the graph representation
of the navigation mesh.

This NavMesh can be used for fast path-finding by:
1) projecting start-goal points to the mesh,
2) running A* search on the space of NavMesh triangles,

between the start and goal triangles,
3) computing the shortest line-path that connects the

sequence of triangles found.
An efficient implementation of this procedure is already
provided with the Recast toolkit. We implemented a ROS
wrapper for both the path-finding and mesh-construction
functions of Recast, as well as the additional post-processing
routine described previously. As described next, this ROS
wrapper is used by a high-level planner to obtain intermediate
waypoints for local navigation.

We provide both the ROS wrapper for Recast and the
pipeline for generating gait-controller annotations open-source
in https://github.com/ori-drs/gaitmesh 1.

C. High-level planner: long-term multi-controller locomotion
with navigation meshes

The high-level planner takes as input a goal position within
the map and guides the robot to it. At 1Hz, it queries
the NavMesh to obtain the global path to the goal, and
sends an intermediate goal to local planner. We compute the
intermediate goal by finding the point along the NavMesh’s
path that is either 1 meter way from the current state of the
robot, or just before a sharp turn—whichever option is closest.
In our experiments we defined 20 degrees as a sharp turn.

D. Local planner: short-term multi-controller locomotion

The local planner computes a trajectory to the intermediate
goal given by the high-level planner, using a local heightmap
obtained from the robot’s onboard sensors. We use GridMap
for heightmap computations [9]. We use sensor-based maps
instead of the NavMesh at this stage in order to reflect

1The repository will be made public upon acceptance.

the actual geometry of the environment—which might have
changed since the NavMesh construction stage.

The local planner uses A* search to compute a path from
the current state of the robot to the intermediate goal. The
search is made in the space of 3D position and yaw rotation,
thus also compensating for the cylindrical assumption of path-
finding in the navigation mesh. We compute collision using a
set of spheres that cover the body of the robot and computing
its intersection with the local heightmap.

Furthermore, the planner constantly checks the map’s
controller annotations in the location over which the robot is
currently walking to trigger the switch of gait controllers. For
the experiments presented in this paper we used the NavMesh
annotations to trigger controller switches. However, similar
local features that are used for NavMesh annotation could
potentially be computed on the local sensor-based maps to
trigger the switches as well, as we have shown in [1].

Finally, the local planner can add obstacles to the NavMesh
whenever it fails to find a path to the intermediate goal. This
could happen either because the environment has changed
(e.g. new furniture, closed doors), or because of errors in
the NavMesh construction process (e.g. an obstacle was
not properly seen by the scanning device). Such NavMesh-
obstacles will immediately lead to changes in the global paths
and thus in changes to the intermediate goals sent by the
high-level planner to the local-planner.

We implement NavMesh-obstacles as cylinders which
trigger the removal of the underlying triangles. We use
cylinders of constant radius equal to the radius of the
robot, although the interface is general and allows to use
variable-radius cylinders in the future (e.g. estimated through
perception).

V. RESULTS

A. Building navigation meshes

We tested our NavMesh building process in two envi-
ronments. Environment 1 is an oil rig at the Fire Service
College (FSC) in Moreton-in-Marsh, UK, a facility to train
personnel in various simulated environments. Aspects of the
oil rig appear on Fig. 5 and 6. We used a portable laser-
scanner to map the environment. This involved placing the
device at multiple locations on a tripod to take successive 360
degree scans and register them to previous scans. We then
post-processed clouds to remove people, sub-sampled the
cloud, and ran the process in Fig. 3. The whole scanning-and-
NavMesh-construction process took approximately 9 hours.
The NavMesh generation step took 8.6 seconds.

The point cloud, curvature and annotated point clouds
are shown in Fig. 1 together with the resulting navigation
mesh. Trotting areas are in blue and vision-based planned-step
static walking areas are in red. Floors are connected by stairs
which appear connected in the navigation mesh. The number
of polygons to represent the full environment is 6075. Most
flat ground is annotated with trotting except around narrow
passages such as doorways and staircases. The elevated floor
of the facility is annotated with static walking because of its
rough metal grid-like flooring.



Fig. 4: Environment 2, the many-floored ARGOS Challenge
facility model. Left to right, point cloud with color-coded
curvature, controller choice, navigation mesh.

Environment 2 is a CAD model of a real oil & gas onshore
site used for TOTAL’s ARGOS Challenge. We followed
the procedure for CAD models indicated in Section IV-A.
NavMesh generation took 0.5 seconds. We show the clouds
and NavMesh in Fig. 4. The multiple floors are connected by
stairs which appear as long triangles in the navigation mesh.
The number of polygons to represent the full environment is
447. Elevated floors are annotated with static-walking as the
corridors are narrow.

B. Comparison to sampling-based planners

In this section we compare NavMeshes against popular
sampling-based planning methods in robotics. In particular
PRM* uses a similar approach to planning compared to
NavMeshes—it encodes traversability between locations in
the environment offline as a graph, which is then searched
at query time and refined to find an optimal path. While
NavMeshes rely on deterministically building a geometric
representation of the environment (set of triangles), PRMs
build only a graph connecting specific random locations. For
this experiment, all methods minimized only distance of the
path—thus ignoring gait-controller annotations.

We ran the comparison on Environment 1. To execute
PRM* we used the OMPL library implementation [31] on
the point cloud of the environment. We defined state validity
as the intersection of a cylinder with any points on the cloud.
We used a cylinder of the same dimensions as that used
for the NavMesh. For a state to be feasible it also needs to
intersect points in a volume below the cylinder (i.e. to make
contact with the ground). States are sampled by randomly
picking points from the point cloud and placing the robot at
a height within a random interval. For planning trajectories
in this roadmap we let PRM* refine the path. We obtained
results for building times of 10, 20 and 360s, and for planning
times of 0.1s and 1.0s. We also compare NavMeshes to the
use of RRTs: where at planning time an RRT is run from
scratch for a given time budget.

Table I shows the pre-computation time, planning time, and
path length obtained with NavMeshes, PRMs and RRTs on
40 planning problems. Each planning problem is a randomly
sampled start and goal state, and the average path lengths
are shown. All methods were given the same planning
problems. Since randomly-generated start and goal states
can be on different-floors, we specifically generate 20 same-
floor problems and 20 different-floor problems. The table
shows that NavMeshes obtain 100% success rate at 1000x

A

Fig. 5: The influence of controller-reasoning in the NavMesh.
The robot either climbs over or trots around a barrier (A)
depending on the distance to its end. The top image shows
the site upon which the simulation was made.

faster computation times than the best-performing sampling-
based method. The best competitor was PRM* when it was
left to build the roadmap for 360s (compared to 8.6s building
time for NavMeshes) and at a computation time of 1 second,
compared to 1ms for NavMeshes. Path lengths were around
30% higher in PRMs, and only when the roadmap is built
for long enough time (360s). Of the single query methods
RRTConnect did best but only solved 5 out 20 problems.

Importantly, the success rate of sampling-based planners
considerably drops when the environment becomes more
challenging and involves narrow passages, such as staircases
to access different floors). In this setting, only PRM* manages
to find paths, but again at lower speeds and at a 50% success
rates compared to 100% for NavMeshes.

C. Qualitative inspection of multi-controller paths

Next, we qualitatively show the behavior of the NavMesh-
based planner when gait-controller annotations are considered.
We have two controllers available: 1) flat-ground trotting and
2) vision-based planned-step static walking. Since the trotting
controller moves at approximately 8 times faster speeds than
the static walking controller, we used a cost multiplier of
8 for walking-annotated regions. This means that the cost
of 1 meter on a trotting-annotated region is 1, but on a
walking-annotated region it is 8.

Fig. 5 shows paths obtained around a 20cm-high barrier
on the ground. It shows how the planner produces paths that
go around the barrier when the robot is sufficiently close to
its end, but over the barrier when far away. Fig. 6 shows a
longer-range example, where the planner prefers to go around
a building for a longer distance instead of going inside and
outside the building in a shorter-distance straight path. Going
through the building involves slow walking over the stairs
to go in and out, when compared to the time required to
go around the structure on a flat area while trotting. In this
particular case the predicted travel time would be 3.7 higher
going through the building instead of around it, despite the
shorter distance.



Same-floor problems Different-floor problems
Planner Pre-computation time (s) Planning time (s) Success rate Path length lPlanner

lRecast
Success rate Path length lPlanner

lRecast

NavMesh 8.6 0.001 20 / 20 1.00 ± 0.00 20 / 20 1.00 ± 0.00
PRM* 10.0 0.100 00 / 20 - 00 / 20 -
PRM* 10.0 1.000 00 / 20 - 00 / 20 -
PRM* 20.0 0.100 01 / 20 1.03 ± 0.00 00 / 20 -
PRM* 20.0 1.000 01 / 20 1.03 ± 0.00 00 / 20 -
PRM* 360.0 0.100 09 / 20 1.34 ± 0.09 09 / 20 1.22 ± 0.17
PRM* 360.0 1.000 10 / 20 1.33 ± 0.09 09 / 20 1.22 ± 0.17
RRT 0.0 0.100 00 / 20 - 00 / 20 -
RRT 0.0 1.000 03 / 20 1.34 ± 0.11 00 / 20 -
RRTConnect 0.0 0.100 00 / 20 - 00 / 20 -
RRTConnect 0.0 1.000 05 / 20 1.98 ± 0.70 00 / 20 -
RRT* 0.0 0.100 00 / 20 - 00 / 20 -
RRT* 0.0 1.000 02 / 20 1.11 ± 0.11 00 / 20 -

TABLE I: Benchmark of success rates and path lengths in NavMeshes vs PRMs and RRTs.

Fig. 6: The advantage of controller-reasoning in the NavMesh.
Left: a least-distance path goes through buildings which
require stair-climbing and few trotting. Right: the controller-
aware path is lengthier but 3.7 times faster since it goes
around the buildings on long trotting periods.

D. Full execution in simulation

In the next experiment we tested the execution of the full
system of Fig. 2 which includes high-level planning, local-
map planning and controller switching. We conducted the
experiment in the Gazebo simulator in ROS. The robot started
in the middle of the (approximate simulation model of the)
FSC oil rig facility and we gave the high-level planner a
goal inside one of the buildings. In addition, we added to the
environment an object that was not present in the navigation
mesh. Fig. 7 shows the robot trotting outside the building and
adding virtual obstacles to the navigation mesh, indicated as
red cylinders, as it fails to locally plan to follow the global
path. The robot then navigates around the new object and
successfully climbs the stairs to access the inside of the

building. Finally it walks to reach the desired goal. A video
of the experiment is included in the attachment.

E. Long-range executions on the real robot
We conducted a set of field trials at the FSC oil rig

facility (Fig. 1). In the first experiment the robot was placed
on flat ground and given a goal around the facility, in a
location that requires going inside and then navigating a set
of metal containers connected through narrow passages. A
zoom-up of the location is shown in Fig. 8 together with the
trajectory executed by the robot, as given by the output of the
localization block. The figure shows the robot continuously
trotting to the entrance, walking over the steps, navigating
the containers, and then exiting the structure through another
set of steps on a distant side of the facility. The total
traveled distance was 29 meters. Path-planning within the
NavMesh took approximately 1ms consistently throughout
the execution.

For our second experiment the robot was placed outside on
flat ground and given a goal straight ahead on the other side
of the facility, after the 20cm barrier previously described
in Sec. V-C. We set a goal close to the end of the barrier
on purpose, so that a plan is produced that walks around
the barrier instead of the shorter-distance option of climbing
over—as in the experiment of Sec. V-C. Fig. 9 shows the path
the robot takes, straight on flat ground, around the pillars and
staircases and then around the barrier to reach the goal. The
total traveled distance was 33 meters. Path-planning within
the NavMesh took less than 1ms throughout.

Finally, we placed the robot in front of the same barrier but
further away from its end, as in Fig. 5. The robot was given
a goal straight ahead. Fig. 10 shows the robot trotting up to
the barrier, walking over it using the vision-based walking
controller and then trotting to the goal. The total traveled
distance was 6 meters.

VI. CONCLUSION AND DISCUSSION

We proposed the use of navigation meshes as a high-level
planning tool for long-range legged locomotion. We proposed
a way to automatically annotate and build these structures in
a way that is relevant to the multi-controller nature of legged
robots. We integrated NavMeshes with high- and low-level
planners that deal with long- and short-term reasoning, as



Fig. 7: Full execution in a simulated version of the FSC oil rig environment. Yellow lines indicate the shortest-path to the
goal as computed in the NavMesh. The large box that the first paths go through was not modeled in the original NavMesh.
Red cylinders indicate virtual obstacles added to the NavMesh on-line. The red sphere indicates the goal.

Fig. 8: Experiment 1 at the FSC oil rig site. The first image shows the original point cloud and navigation mesh (cropped for
visibility) overlapped with the executed path given by localization.

Fig. 9: Experiment 2 at the FSC oil rig site. The first image shows the original point cloud and navigation mesh (cropped for
visibility) overlapped with the executed path given by localization. The robot trots through the facility and around a 20cm
barrier to reach a goal close its end.

Fig. 10: Experiment 3 at the FSC oil rig site. The first image shows the original point cloud and navigation mesh (cropped
for visibility) overlapped with the executed path given by localization. The robot climbs over a 20cm barrier when far away
from its end.



well as a way to switch between controllers and deal with
unmodeled or new obstacles. We compared the performance
of path-finding in NavMeshes against traditional sampling-
based planners and quantitatively showed the superiority of
NavMeshes—they are both faster to build and query than
PRMs, as well as finding considerably more paths and of 30%
shorter lengths. We ended by demonstrating the usefulness of
such a system in real-world large-scale locomotion examples
in an industrial facility.

In future work, we aim to tackle two of the limitations of
the current system. One is the mesh reconstruction step, which
because of point cloud noise can lead to narrow passages
becoming even narrower on the reconstructed mesh and
NavMesh. Currently this means that either robot-cylinder radii
have to be made smaller than the actual robot for planning
to be possible, or post-processing of the point cloud must be
done to clean narrow passages before mesh reconstruction (we
used the former in this paper). In the future we will investigate
better mesh reconstruction methods for this purpose. Another
limitation of our approach is the cylindrical approximation
of NavMeshes itself—which implies that NavMesh paths are
not guaranteed to be executable in general but especially for
long robots such as quadrupeds on narrow turns. To alleviate
this issue we are considering a path-verification step of path
planning or NavMesh-construction to identify such cases and
obtain alternative paths. Other interesting research directions
include online NavMesh building, and the use of NavMeshes
for sampling-bias or cost-heuristics in sampling and search-
based multi-gait planning methods such as [1].
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[31] I. A. Şucan, M. Moll, and L. E. Kavraki, “The Open Motion Planning
Library,” IEEE Robotics & Automation Magazine, vol. 19, no. 4, pp.
72–82, December 2012, http://ompl.kavrakilab.org.


