CONFIDENTIAL. Limited circulation. For review only.

Reliable Trajectories for Dynamic Quadrupeds
using Analytical Costs and Learned Initializations

Oliwier Melon (), Mathieu Geisert

Abstract— Dynamic traversal of uneven terrain is a major
objective in the field of legged robotics. The most recent
Model Predictive Control approaches for these systems can
generate robust dynamic motion of short duration; however,
longer time horizons may be needed when navigating terrain.
A recently-developed framework, Trajectory Optimization for
Walking Robots (TOWR), computes such plans but does not
guarantee their reliability on real platforms, under uncertainty
and perturbations. We extend TOWR with analytical costs
so as to ensure trajectories that a state-of-the-art whole-body
tracking controller can execute successfully. To reduce online
compute time, we implement a learning-based scheme for near-
optimal initialization of the nonlinear program based on offline
experience. The execution of trajectories as long 16 footsteps
and 5.5 s in multiple environments by a real quadruped
demonstrates the effectiveness of the approach on hardware.
This method builds toward online, robust and fast replanning.

I. INTRODUCTION

In the near future, legged robots are expected to be used in
a range of application domains where advanced mobility is
required. The key benefit of such machines is their flexibility
in operating on a variety of terrain designed for humans,
or lacking regular structure. This comes at the cost of
increased complexity as legged robots are articulated systems
with high-dimensional kinematics and dynamics that involve
changing contact with the environment. Other hurdles arise
due to real-world sensing, actuation limits, state estimation
and perturbations. As a result, legged robots need a flexible
motion planning approach to efficiently and robustly perform
their tasks.

The generation of dynamic motions for these platforms
is an open research problem with recent advances focusing
on optimization-based approaches. Longer trajectories can
produce better system performance, but are more difficult
to compute, ruling out the online use of global methods.
Gradient descent is less demanding but can get stuck in poor
local minima due to the strong non-convexity of the problem.
Thus, local optimization is appealing only if the constraints,
costs, and the initial guess of the nonlinear program can all
be specified effectively.

In this work, we combine a learning-based, data-driven
initialization with an enhanced formulation of the opti-
mization problem of dynamic motion generation, which we

This work was supported by the UKRI/EPSRC RAIN Hub
[EP/R026084/1] and the EU H2020 Projects MEMMO and THING,
the EPSRC grant ‘Robust Legged Locomotion’ [EP/S002383/1] and a
Royal Society University Research Fellowship (Fallon). This work was
conducted as part of ANYmal Research, a community to advance legged
robotics. The authors are with Oxford Robotics Institute, University
of Oxford, UK. Email: {omelon, mathieu, dsurovik,
ioannis, mfallon}@robots.ox.ac.uk.

, David Surovik

, Ioannis Havoutis and Maurice Fallon

Fig. 1: The ANYbotics ANYmal executing a dynamic stair
climb with the proposed approach, as shown in the accom-
panying video.

Cost Terrain
Initial —l l_ Base & Feet
Trajectories

Controller

Fig. 2: Overview of the system used for learning, trajectory
optimisation and execution on a real quadruped.

Guess

demonstrate for a quadrupedal robot walking on uneven
terrain. The objective is to produce robust plans over suitably
long time horizons with minimal online computing effort.

A. Contributions

« Extension of the TOWR legged robot motion opti-
mization framework [1] with analytical costs to create
dynamic trajectories that can be reliably tracked by a
controller.

o A data-driven method to produce good initial guesses so
as to speed up optimization convergence. The method
can compute trajectories 16 footsteps long in less than
1 second while avoiding poor local minima.

« Significant evaluation in dynamic simulation to demon-
strate how the combination of these changes make
execution much more reliable than the baseline method.

« Experiments using the real ANYmal robot on flat and
uneven terrains, including a ramp, using walking and
trotting gaits, which use only onboard sensors, that
verify the validity of our approach and its suitability
for real hardware.

Manuscript 1440 submitted to 2020 International Conference on
Robotics and Automation (ICRA). Received September 15, 2019.

CONFIDENTIAL. Limited circulation. For review only.

B. Overview

This paper begins with an overview of related state-of-
the-art approaches in Sec II. Descriptions of the baseline
trajectory optimizer and tracking controller are then provided
in Sec III, along with new modifications that allow these
tools to be effectively combined. Sec IV describes training
for effective initialization based on offline experience, with
initial analysis of its benefit. Sec V describes experimentation
on multiple environments in both simulation and hardware.
The paper concludes with final remarks in Sec VL.

II. RELATED WORK

1) Trajectory Optimization for Legged Robots: Trajectory
optimization (TO) approaches have been used for short to
medium scale motion planning in recent research [2], [3].
They usually employ direct methods to transcribe a continu-
ous, infinite dimensional problem as a discrete, parametrized
nonlinear programming problem (NLP) [4].

A key characteristic of legged locomotion optimization
problems are discontinuities due to contact transitions of
the end-effectors. Two approaches have been used to solve
this problem. The first one reformulates contact as a smooth
rather than a discontinuous state [5], [6], [7]. This transforms
the discontinuous and minima-prone problem into a contin-
uous problem that can be solved with homotopic methods.

The second approach defines the problem as a succession
of phases separated by the contact state transition of each
end-effector. In most cases, the timing and position of the
contacts are computed externally and the optimization only
solves for the centroidal motion of robot [8], [9], [10], [11].
In [1], the contact state of each leg is considered separately,
which theoretically allows it to generate different gaits when
optimizing the duration of each phase. Moreover, the posi-
tions of the footsteps are included in the set of optimized
variables. Unlike the previously mentioned approaches, this
formulation allows a highly non-convex shape of the problem
to be solved by recasting it as a feasibility problem.

2) Data-driven Initialization: Data-driven trajectory ini-
tialization schemes have been applied in the domain of
manipulation to speed up the computation of smooth paths
when reaching past obstacles [12], [13], [14]. Alternatively,
such methods can produce multiple initializations in differ-
ent basins of attraction, so as to identify distinct ways of
approaching the object to be grasped [15], [16]. Dynamic
constraints can additionally be met for tasks such as quickly
reaching to catch a thrown object [17] or rejecting large dis-
turbances on underactuated aerial vehicles [18]. For legged
locomotion on terrain, a related idea has also been applied to
plan individual feasible footsteps, which were then combined
by another process into a full motion plan [19].

Most of these efforts map tasks to initial solutions, while
others map to segments of solutions [19], or to additional
constraints that convexify the problem [15]. Nearly all con-
sider nearest-neighbor lookup and regression on an experi-
ence library as a mapping method, while many also consider
other function approximators. These include Support Vector
Machines [15], [17], Gaussian Process Regression [16], [17],

left-foot stance phase
left-foot z-position

base y-position
————— left-foot z-force

.
. . et \‘

0/ \‘

4 - \—o-
\
- o & ‘\1

1.2 1.3 1.4 1.5 1.6

Time (s)

Fig. 3: A illustrative sample of the trajectories computed by
the numerical optimizer, for a quadruped trot. Red dots and
black lines represent values at optimization nodes, interpo-
lated using cubic splines.

or Artificial Neural Networks (ANNs) [15], [18]. Another
recurring element is the use of feature-spaces and dimension-
ality reduction techniques [19], [13], [14], [15], [16]. In each
case, the goal is to sufficiently represent past experiences in
a way that can be related to future decisions.

III. MOTION GENERATION

In this section we present our motion generation and
trajectory execution approach. We first review the TOWR
trajectory optimization package, which uses a simplified
model of the robot to plan motions for the legs and center
of mass (CoM) between initial and final configurations. We
then present improvements and adaptions which can create
motion plans which are more suitable for the real robot
to execute. Then we describe the whole-body controller
that computes the joint torques necessary to execute these
generated motions and provide an illustrative evaluation.

A. Trajectory Optimization for Walking Robots (TOWR)

The first part of this paper extends the work of Winkler et
al. [1] and builds upon their open-source library TOWR [20].
TOWR is a library capable of producing highly-dynamic
trajectories for a range of walking robots by formulating
locomotion as a nonlinear program (NLP). The approach
considers centroidal dynamics of the base which is assumed
to contain all of the system mass, along with the paths and
contact forces of the feet.

The problem is discretized into a numerically-solvable
formulation with a collocation approach. In this case, tra-
jectories are constructed as splines of N cubic Hermite
polynomials, where each polynomial is fully defined by the
values and the derivative at its start and end nodes. Figure 3
shows these splines for some of the problem variables. The
base trajectory is discretized at a fixed timestep, while the
feet trajectories and contact forces are discretized with a fixed
number of polynomials per phase (here, 2 for the swing
trajectory, 3 for the stance forces). Therefore, the number
of variables for the feet and contact forces varies with the
number of steps, while the number of base-related variables
depends on the time horizon.

The formulation of the locomotion problem implicitly
constraints some of the variables:

Manuscript 1440 submitted to 2020 International Conference on
Robotics and Automation (ICRA). Received September 15, 2019.

CONFIDENTIAL. Limited circulation. For review only.

o Forces are null during the swing phases;

o Derivatives of the forces and feet positions are zero at
the transitions between the swing and stance phases;

« A swing node is the highest point of the swing trajectory
and its z-dimension derivative is set to 0;

o Feet are fixed in place during the stance phase.

The number of optimization variables is then N =
12T/dt + 20S + 120, where T is the time horizon, dt the
time discretization interval for the base motion and S is
the number of steps. Moreover, if the timing of steps is
optimized, the duration of the stance and swing phases of
each step are included, adding 2.5 variables.

The problem is then transferred to an NLP solver (Ipopt)
which searches for a solution respecting the following ex-
plicit constraints:

o Dynamics of the system (modeled as one rigid body);

« Kinematic limits (the positions of feet relative to the
base constrained within a box);

« Maximum contact forces and friction pyramids;

« Feet at terrain height at stance.

For the original TOWR formulation, the NLP solver only
solves a feasibility problem so generally it quickly converges
to a solution (less than 40 iterations). While the resulting
motion plans are promising, realizing them on real hardware
is difficult. Oscillation and body rolling motions are common
while footstep placement and leg terrain clearance are not
considered. These issues are tackled in the next section.

1) Smoothing trajectories using costs: To generate more
conservative trajectories for motions such as the one shown
in Fig. 1, we extended TOWR with analytically-derived
costs. A set of i costs J;(t) are scaled by weights w;, to
give a total cost of J(¢) = > w;J;(t). Integral costs were
added to minimize linear velocity in the z-axis and angular
velocity of the base, as well as penalizing the magnitude and
derivatives of the ground-reaction forces and to maintain the
desired magnitude of the normal force. The generic cost was

Ji(t) = /O ' ((mi(t) —a}! (t))2 + wi,da'ci(tf) dt, (1)

where, x;(t) is the optimized polynomial, wg is the weight
on its derivative which penalizes short, but potentially large,
deviations from the reference value z/“/(t). These costs
and their Jacobians were computed analytically using the
parameters of the polynomials and their relations with the
values at each node of the trajectories.

2) Locomotion on uneven terrain: Our aim is to generate
dynamic motions to traverse slopes, steps and stairs. The
original TOWR implementation does not take into account
feet collisions with walls or collisions that can occur between
spline nodes. In contrast, for the base of the robot, we add
kinematic constraints to enforce that the base remains a
certain distance above the feet; this eliminates the chance
of collision between the base and the ground.

To discourage the solver from creating trajectories that
intentionally attempt to pass through or unintentionally col-
lide with stair edges, a cost was added to discourage the
robot from selecting footsteps close to the edges of the

steps. The selected cost is a differentiable Gaussian function
Zeg”i/ 20” \where x5 represents the perpendicular distance
from each footstep to the edge of the stair. This only affects
the footsteps which are close to the edge, while having a
negligible effect on the remaining ones.

To ensure that leg terrain collisions are avoided, both a
constraint and a cost are applied to the height of the swinging
feet. The constraint ensures that the swing node is a certain
distance above each of the adjacent stance nodes while the
cost minimizes the swing height to prevent large leg motions
that would create angular momentum on the real system.

B. Whole-Body Controller

Once the trajectory has been generated, the whole-body
controller of Bellicoso et al. [21] is used to track the
trajectory of the base and the end-effectors at 400 Hz. The
controller also contains a state machine to adapt gains in case
of slip and other unexpected contact events [22].

C. Validation in Simulation

In Fig. 4, and our accompanying video, we demonstrate
the need for more sophisticated planning with a trajectory up
and over a step, both with and without the proposed costs.
Fig.4(a) and (b) show an overall decrease in peak x- and y-
direction forces. Fig.4(c) shows an increase in the z-direction
force during the third second of the trajectory resulting from
a corresponding decrease in the x-direction force. Fig.4(d)
shows the inertial stabilization of the base — a significant
reduction in the roll and pitch angular velocity of the base
can be observed.

Fig.4(e) and (f) show the norm of the tracking errors of the
base during the execution of the trajectories by the whole-
body controller in the Gazebo physics simulator. Initially, the
controller manages to track both trajectories well; after 2 s,
the controller can no longer adequately follow the trajectory
without the proposed costs, as indicated by the increase in
orientation error. At 3.2 s, the robot’s front foot collides
with the step and the robot falls. Meanwhile, the controller
tracking the trajectory generated with the addition of the
proposed costs successfully completes the execution.

However, the use of costs and constraints makes the solve
time of the optimization problem longer; we use machine
learning to provide an efficient optimization seed which
offsets the extra computation time shown in Table 1.

IV. LEARNING INITIALIZATIONS

Optimization frameworks such as TOWR require an initial
guess of the solution y, which can be generated automatically
by some map

A:x =y 2)

that acts upon the task x, e.g., the pair of initial and desired
robot states. This guess substantially affects not only the rate
of convergence but also the quality of y. As more costs and
constraints are used, more local minima arise, and the initial
guess becomes even more influential.

The conventional guess generator for TOWR, termed
Heuristic, linearly interpolates a path for the floating base

Manuscript 1440 submitted to 2020 International Conference on
Robotics and Automation (ICRA). Received September 15, 2019.

CONFIDENTIAL. Limited circulation. For review only.

—~ 100
Z 50 LF stance w/o costs w/ costs |
[
@g O
= -50F
=100 " i i i i
—~ 25F
€ 0
o \W/
U? -25+F
> 50
—~ 2001
Z
© g 100 _/\ ﬂ A /’é\ ﬁ\
s}
K
N 0 1 L L I 1
2 -
— — —roll w/o costs roll w/ costs
L5r pitch w/o costs pitch w/ costs
1+ /\ \ N
AN

o
n

(@

(=}

Angular Velocity (rad/s)
o
wn

L‘ 1
a L

0.051

- 0.03F
O]
. 0.01F

S
=)

fall (w/o costs)
w/o costs
w/ costs

®

é

S
2

Orient. Err. (rad) Pos. Err. (m)
o O O
—_— N W

(=)
—_
[\S}
w
~
w

Time (s)

Fig. 4: By adding costs to the optimization problem we
can constrain foot forces and base angular velocities to
successfully climb a step (Sec. V-.2) in simulation.

— G
Tralnlng—P(Heuristic Initialization — TOWR x100
Task
Offline Solution |
v
Online) Guess Base & Feet
Task —P(Learned Initialization TOWR xn Trajectories
Fig. 5: Learning from previous fully-converged outcomes
allows the optimizer to be initialized close to a good solution.

between the start and goal locations from x. Footsteps are
evenly-spaced and transitions between them are evenly-timed
according to the selected gait, with contact forces equally
distributed to counteract the robot’s weight.

The objective of this section is to produce a data-driven
initializer, LearnedInit, to replace the heuristic such that far
less optimization effort (iterations) is required, as sketched
in Fig. 5, while furthermore avoiding poor local minima.

A. Methodology

Denoting the heuristic as A;, and an iteration of the
optimizer as another map 7, optimization can be expressed
as ypn (x) = TN Apx, with iteration count N selected
based upon convergence or available compute time. The
improved initializer is a function approximator Ay trained
to mimic the behavior of the optimization process TV Aj,.
For a given task space X, its optimal parameters are then
defined by

0 = argmin » | Apx —ynn (%) [|lw 3)
o’ xXEX
with a positive-definite weight matrix .

In this work Ay is a fully-connected neural network with 2
to 3 hidden layers, where 6 refers to the connection weights.
These are determined through supervised learning on a
dataset D = {x;,yn.n (x;)} = (X,Y) with samples x; €
X. At present, a given 0 is learned for a specific environment;
however, this serves as a first step toward contextual planning
with x augmented by local environmental features. The form
of y, whose length depends on the total duration and footstep
count, is also kept constant.

Given the significant risk of converging to poor local
minima, the dataset D is not guaranteed to imply a well-
behaved map from X to the solution space). Two additional
steps are thus taken to ensure the tractability of the learning
problem (3) and the quality of its result.

First, D is filtered based on a threshold of solution cost
Jmaz t0 exclude poor solutions from training:

Dgood - {Xi;yi | g(Y7.) < gmam} (4)
Second, since even D4 is unlikely to contain only globally
optimal solutions, the average performance and uniformity
of the learned initialization can potentially be increased by
repeating the process of Fig. 5 with 6 retrained on optimiza-
tion outcomes resulting from its previous value. This cycle
of moderate exploration and filtering thus lends an aspect
of reinforcement learning to the scheme, with particular
similarity to the alternation between local optimization and
global supervised learning of control laws in Guided Policy
Search [23].
The learning method is summarized in Algorithm 1. No-
tably, Ng < N}, can be used due to the faster convergence
observed when using learned initialization.

Algorithm 1: TRAININITIALIZER
Input: A set of sampled tasks X
Output: Learned initializer parameters 6
Y < TowWR(A(X); Np)
for loop count do
Dgood <FILTER(X,Y; grmaz)
6 <—SUPERVISEDLEARNING (D g00q)
Y (*TOWR(AQ (X), Ng)

return 0

Manuscript 1440 submitted to 2020 International Conference on
Robotics and Automation (ICRA). Received September 15, 2019.

CONFIDENTIAL. Limited circulation. For review only.

1.00 1.00 1 —
g \ — Heuristic
| = | —=-- Heuristic_good
0.75 %S 0.75 LearnedInit-1
@ > —— LearnedInit-2
8 0.507 .g 0.501 —— LearnedInit-3
0.251 Z0.251
) O\
0.00+——————— 0.00 +— S
0 5 10 15 20 25 0 5 10 15 20 25
iterations iterations
3 4
10 I Heuristic
” LearnedInit-1 ”
3 102]] carnedlnit-2 3
=} . =}
3] I LearnedInit-3 o
St
g 10" 5
o o
10° 4

200 400

cost maximum force (N)

Fig. 6: Optimization performance under different initializa-
tion schemes on a large task set. With Heuristic, many
sampled tasks diverge, producing high costs and forces. Each
cycle of training for LearnedInit improves the convergence
rate, final cost, and maximal force, while eliminating outliers.

B. Setup

For each of the test environments, which will be fully
detailed in Sec. V, a set of about 2000 tasks were sampled
from the task space. This space expresses variation of the
initial base location and yaw angle. The distribution g (V') of
costs resulting from optimization with Heuristic and Ny, =
100 generally exhibited a long tail of outliers, as seen in
Fig. 6, that correspond to poor local minima. The filtering
threshold g, Was set at the start of this tail, reducing the
initial training set D04 to about 300-500 sampled tasks, and
a two-layer network was fit to this small dataset. Subsequent
learning cycles used Ny = 25 due to fast convergence, as
well as a 3-layer network due to the larger number of samples
passing through the filter.

The loss-weighting matrix W consistently weighted each
category of optimization variable. An initial check was
conducted in which some categories were initialized by Ay
and others by Aj,. This revealed that the base linear positions,
stepping phase durations, and contact forces were the most
crucial values to improve through learned initialization. This
hints at a separation between macro-scale influences on the
dynamic trajectory, which require the most effort for the
optimizer to adjust, and other values that more readily arise
from constraints and local gradients. Ultimately, the best
performance was obtained using coarsely tuned weights that
included all categories.

C. Analysis

This section provides a detailed look at the effect of
Algorithm 1 upon the optimization process. As similar trends
were observed for all the environments tested, their detailed
description is deferred to Sec. V. The results here reflect the

Single Pallet problem of ascending a ledge. For this problem,
the starting base position ranges from between —0.5 m to
—1.5 m back from the step and £0.75 m laterally from the
goal position, with yaw variation in the range +30°.

Figure 6 shows the benefits of LearnedInit in terms of
convergence rate, final cost, and the maximum force ex-
perienced by the robot. Heuristic initialization often results
in poor local minima, and sometimes causes divergence of
the optimization process as indicated by high costs and
violations of the maximum force constraint (truncated from
the plot). Due to the use of filtering, LearnedlInit exhibits
better and more consistent performance, succeeding on most
tasks that were failed by Heuristic. Retraining LearnedInit
after optimizing its original output set increases these benefits
and eliminates nearly all outliers.

V. EXPERIMENTAL EVALUATION

The proposed approach was evaluated over a set of 3 dif-
ferent terrains of increasing difficulty. As discussed in III-A,
the number of optimization depends on the number of steps
and the time horizon of the trajectory. While the number of
steps was kept constant (16 steps for walking, 14 for trotting),
the time horizon was changed on a per-environment basis to
make dynamic trajectories feasible. A different initializer was
trained for each gait and environment pair, corresponding to
a fixed number of optimization variables.

1) Flat ground: The generated trajectories were tested on
flat ground for distances of up to 1.5 m with footsteps of up
to 50 cm. To have highly dynamic motions, the time horizon
has been set to 3.5 s which results in a velocity of about
0.6 m/s during the middle stage of the trajectory. During
the first iteration of the learning phase shown in Fig. 5, the
heuristic initialization, used to generate the first set of data,
bases the contact sequence on a trotting gait. For this setup,
the number of optimization variables is 848.

2) Single Pallet: The Single Pallet is a standard 1.2 x 1 m
industrial pallet with a sheet of plywood on top (see Fig. 7),
whose total height was 16.5 cm. For this experiment, the
forward motion was about the same as for the Flat Ground,
while the time horizon of the trajectory was increased to
5.5 s. The initial orientation of the base was restricted
such that the pallet stays within the field of view of the
robot’s camera. In this scenario, there were 952 optimization
variables.

3) Double Pallet: This two-step environment is shown in
Fig. 1. The step were 14.5 cm and 16.5 cm high. The forward
distance between the two steps was 40 cm. For this test,
the parameters have kept the same as for the Single Pallet;
therefore, the number of optimization variables is also 952.

A. Test in dynamic simulation

To evaluate the performance of the learning approach,
solutions from each initialization method were tested in
simulation. A sample set of 100 tasks were optimized for
each of several iteration counts and executed by the whole-
body controller discussed in Sec. III-B. Trials that did not
reach the goal state were marked as failures. For those that

Manuscript 1440 submitted to 2020 International Conference on
Robotics and Automation (ICRA). Received September 15, 2019.

CONFIDENTIAL. Limited circulation. For review only.

Fig. 7: The comparison of a TOWR-generated, dynamic trajectory (top) with the experimental evaluation (bottom) for a

5.5 s climbing of a pallet with a turn.

1001 1.001 —
—o— Heuristic
;\? | = 1 LearnedInit-1
\q-; 75 % 0.75 Q.__ —e— LearnedInit-3
<
~ 501 20
é 251 E 0.251
0+—d— ‘ 0.00 ‘ ‘
0 10 20 30 0 10 20 30
iterations iterations

Fig. 8: Performance of trajectories climbing a single pallet
under whole-body control in simulation (100 tasks per data
point). LearnedlInit produces solutions that are easier to track,
reaching high success rates after minimal online refinement.
Fixing phase durations at initialized values improves opti-
mization stability.

succeeded, tracking accuracy was measured to indicate how
well-suited the planned trajectory was to the closed-loop
system.

Shown in Fig. 8, are the three training cycles are used,
the outputs of Learnedlnit are executable more than half
the time without any further optimization, and the success
rate approaches 95% within about 5 iterations. Results were
similar for all environments.

In an unanticipated result, optimizations under LearnedlInit
were found to eventually diverge after their high-performance
peaks. Shown by the dotted lines in Fig. 8, success rates
remain more stably in the vicinity of 95% when a separate set
of optimizations were executed with step durations remaining
fixed at their initialized values. This behaviour is caused by
the extreme nonlinearity of the problem.

Several variations of the optimization have been tested:
With timing optimization, without timing optimization, and
without the optimization of time and foot trajectories. Opti-
mizing time gives a great improvement in the computation
time per iteration while the success rate is similar, or
better. Taking the foot trajectories from the initialization (but
eventually adapting the height to correspond to the terrain)
and not re-optimizing the corresponding variables, resulted in
a slight increase in the computation time. It appears that it is
much simpler for the optimization to adapt the foot positions
than the base trajectory since the base is coupled to and
constrained by the feet. Table I summarizes the computation
times obtained on the onboard locomotion computer.

Optimization Flat Ground (ms) Pallets (ms)
Variables 1st iter. Mean 1st iter. Mean
Full 315 [304] | 156 [126] | 843 [700] | 417 [305]
No Phase 210 [202] 69 [60] 385 [371] | 117 [108]
No Phase&Feet | 282 [282] 84 [74] 534 [524] | 177 [145]

TABLE I: Computation time per iteration. The first iter. takes
longer due to the solver initialization, subsequent iteration
times are approx. constant. The mean was computed for 100
iter. The values w/o costs are shown in the square brackets.

B. Test on the real platform

While the robot’s sensors could have been used to create a
model of the terrain (using its Intel RealSense depth camera),
the model of the environment was instead loaded from a
virtual model. This ensured repeatability and avoided limits
in sensor field of view and the resolution. For the tests using
pallets, the robot’s front camera was used to read an AprilTag
which gave the position and orientation of the obstacle with
respect to the robot. The robot’s onboard state estimator [24]
was used as state input; measureable estimator drift was
present. The full system — the generation of the initial guess,
the optimization of the trajectory and its execution by the
whole-body controller — ran onboard the robot’s computer.

Fig. 7 shows the kinematic model and the real robot
executing the optimized trajectory on the single pallet while
Fig. 1 shows the double pallet. The results show that despite
the errors in state and terrain estimation, the robot realized
the trajectory to a high degree of accuracy and precision.

VI. CONCLUSION

This work extended an optimization formulation for walk-
ing robot trajectories so that its solutions are not only
feasible in theory, but can also be reliably executed on a
real quadrupedal robot on a variety of terrains of increasing
difficulty. Furthermore, the potential issues of high com-
putational expense and strong nonconvexity were greatly
reduced by generating initial guesses from a neural network
trained on filtered experiences gathered offline. These find-
ings build toward online replanning of terrain-aware dynamic
locomotion with several-step-long horizons, a key capability
for autonomous legged vehicles. Future work will approach
this goal by integrating environmental perception into the
initialization map, more deliberately exploring the nonconvex
solution space, and deploying the scheme in a receding-
horizon manner.

Manuscript 1440 submitted to 2020 International Conference on
Robotics and Automation (ICRA). Received September 15, 2019.

[1]

[2

—

[3

=

[5]

[6]

[7

—

[8

[t}

[9

—

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

CONFIDENTIAL. Limited circulation. For review only.

REFERENCES

A. W. Winkler, C. D. Bellicoso, M. Hutter, and J. Buchli, “Gait and
trajectory optimization for legged systems through phase-based end-
effector parameterization,” IEEE Robotics and Automation Letters,
vol. 3, no. 3, pp. 1560-1567, Jul. 2018. 1, 2

M. Diehl, H. Bock, H. Diedam, and P.-B. Wieber, “Fast direct multi-
ple shooting algorithms for optimal robot control,” in Fast Motions
in Biomechanics and Robotics, M. Diehl and K. Mombaur, Eds.
Springer, Berlin Heidelberg, 2006, vol. 340, pp. 65-93. 2

M. Posa, C. Cantu, and R. Tedrake, “A direct method for trajectory
optimization of rigid bodies through contact,” Intl. J. of Robotics
Research, vol. 33, no. 1, pp. 69-81, 2014. 2

J. T. Betts, Practical Methods for Optimal Control and Estimation
Using Nonlinear Programming, 2nd ed. Society for Industrial and
Applied Mathematics, 2010. 2

E. Todorov, “A convex, smooth and invertible contact model for tra-
jectory optimization,” in /EEE Intl. Conf. on Robotics and Automation
(ICRA), 2011, pp. 1071-1076. 2

T. Erez and E. Todorov, “Trajectory optimization for domains with
contacts using inverse dynamics,” in IEEE/RSJ Intl. Conf. on Intelli-
gent Robots and Systems (IROS), Oct. 2012, pp. 4914-4919. 2

I. Mordatch, E. Todorov, and Z. Popovi, “Discovery of complex be-
haviors through contact-invariant optimization,” ACM Trans. Graph.,
vol. 31, no. 4, pp. 43:1-43:8, Jul. 2012. 2

B. Ponton, A. Herzog, S. Schaal, and L. Righetti, “A convex model of
humanoid momentum dynamics for multi-contact motion generation,”
in IEEE/RSJ Int. Conf. on Humanoid Robots, Nov. 2016, pp. 842-849.
2

J. Carpentier, S. Tonneau, M. Naveau, O. Stasse, and N. Mansard,
“A versatile and efficient pattern generator for generalized legged
locomotion,” in /EEE Intl. Conf. on Robotics and Automation (ICRA),
2016, pp. 3555-3561. 2

C. Mastalli, M. Focchi, 1. Havoutis, A. Radulescu, S. Calinon,
J. Buchli, D. G. Caldwell, and C. Semini, “Trajectory and foothold
optimization using low-dimensional models for rough terrain locomo-
tion,” in IEEE Intl. Conf. on Robotics and Automation (ICRA), May
2017, pp. 1096-1103. 2

C. D. Bellicoso, F. Jenelten, C. Gehring, and M. Hutter, “Dynamic
Locomotion Through Online Nonlinear Motion Optimization for
Quadrupedal Robots,” IEEE Robotics and Automation Letters, vol. 3,
no. 3, pp. 2261-2268, Jul. 2018. 2

D. Berenson, P. Abbeel, and K. Goldberg, “A robot path planning
framework that learns from experience,” in IEEE Intl. Conf. on
Robotics and Automation (ICRA), St Paul, MN, USA, May 2012, pp.
3671-3678. 2

N. Jetchev and M. Toussaint, “Fast motion planning from experi-
ence: trajectory prediction for speeding up movement generation,”
Autonomous Robots, vol. 34, no. 1, pp. 111-127, Jan. 2013. 2

W. Merkt, V. Ivan, and S. Vijayakumar, “Leveraging Precomputation
with Problem Encoding for Warm-Starting Trajectory Optimization in
Complex Environments,” in IEEE/RSJ Intl. Conf. on Intelligent Robots
and Systems (IROS), Oct. 2018, pp. 5877-5884. 2

A. Dragan, G. J. Gordon, and S. Srinivasa, “Learning from experience
in manipulation planning: Setting the right goals,” in Proc. of the Intl.
Symp. of Robotics Research (ISRR). Springer, Jul. 2011. 2

T. S. Lembono, A. Paolillo, E. Pignat, and S. Calinon, “Memory of
motion for warm-starting trajectory optimization,” arXiv:1907.01474
[cs], Jul. 2019. 2

R. Lampariello, D. Nguyen-Tuong, C. Castellini, G. Hirzinger, and
J. Peters, “Trajectory planning for optimal robot catching in real-time,”
in IEEE Intl. Conf. on Robotics and Automation (ICRA), May 2011,
pp. 3719-3726. 2

N. Mansard, A. DelPrete, M. Geisert, S. Tonneau, and O. Stasse,
“Using a Memory of Motion to Efficiently Warm-Start a Nonlinear
Predictive Controller,” in /EEE Intl. Conf. on Robotics and Automation
(ICRA), Brisbane, Australia, May 2018, pp. 2986-2993. 2

M. Stolle, H. Tappeiner, J. Chestnutt, and C. G. Atkeson, “Transfer
of policies based on trajectory libraries,” in IEEE/RSJ Intl. Conf. on
Intelligent Robots and Systems (IROS), San Diego, CA, USA, Oct.
2007, pp. 2981-2986. 2

Winkler, A. W. (2018) TOWR - An open-source trajectory optimizer
for legged robots in C++. [Online]. Available: http://wiki.ros.org/towr
2

[21]

[22]

(23]

[24]

C. Dario Bellicoso, C. Gehring, J. Hwangbo, P. Fankhauser, and
M. Hutter, “Perception-less terrain adaptation through whole body
control and hierarchical optimization,” in IEEE/RSJ Int. Conf. on
Humanoid Robots, Cancun, Mexico, Nov. 2016, pp. 558-564. 3

F. Jenelten, J. Hwangbo, F. Tresoldi, C. D. Bellicoso, and M. Hut-
ter, “Dynamic locomotion on slippery ground,” IEEE Robotics and
Automation Letters, vol. 4, no. 4, pp. 4170-4176. 3

S. Levine and P. Abbeel, “Learning neural network policies with
guided policy search under unknown dynamics,” in Conf. on Neural
Information Processing Systems (NIPS), 2014, pp. 1071-1079. 4

M. Bloesch, M. Burri, H. Sommer, R. Siegwart, and M. Hutter, “The
two-state implicit filter recursive estimation for mobile robots,” IEEE
Robotics and Automation Letters, vol. 3, no. 1, pp. 573-580, Jan 2018.
6

Manuscript 1440 submitted to 2020 International Conference on
Robotics and Automation (ICRA). Received September 15, 2019.

