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Abstract: Function approximators are increasingly being considered as a tool for
generating robot motions that are temporally extended and express foresight about
the scenario at hand. While these longer behaviors are often necessary or bene-
ficial, they also induce multimodality in the decision space, which complicates
the training of a regression model on expert data. Motivated by the problem of
quadrupedal locomotion over obstacles, we apply an approach that disentangles
modal variation from task-to-solution regression by using a conditional variational
autoencoder. The resulting decoder is a regression model that outputs trajectories
based on the task and a real-valued latent mode vector representing a style of
behavior. With the task consisting of robot-relative descriptions of the state, the
goal, and nearby obstacles, this model is suitable for receding-horizon genera-
tion of structured dynamic motion. We test this approach, along with a trajectory
library baseline method, for producing sustained locomotion plans that use a gen-
eralized gait. Both options strongly bias planned footholds away from obstacle
regions, while the multimodal regressor is far less susceptible to violating kine-
matic constraints. We conclude by identifying further prospective benefits of the
continuous latent mode representation, along with targets for future integration
into a hardware-deployable pipeline including perception and control.
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1 Introduction

Midsize quadrupedal robots hold promise for quickly transporting substantial sensor payloads across
difficult terrain, but they involve greater dynamic complexity than many other types of mobile
systems. Recent improvements of both hardware and algorithm capability have led to impressive
demonstrations of dynamic quadruped locomotion—usually with a focus upon speed and agility on
flat ground as well as robustness to external forces and small-scale irregularities in the terrain [1, 2].
A common aspect of most of these approaches, however, is that they are primarily reactive to pertur-
bations at the moment they are felt, rather than proactive in terms of anticipating upcoming terrain
features. Other methods are tailored to handle large-scale irregularities, such as stairs, ledges, gaps,
or rubble, that demand temporally-extended behaviors [3, 4, 5]. However, these approaches typically
involve conservative motion that is significantly slower either to execute or to compute.

This work is geared toward providing sustained dynamic locomotion in situations that strongly ben-
efit from foresight in the planning process. We seek to enable quadrupeds to anticipate and flexibly
respond to obstacles as they appear at the horizon through significant changes to the near-term plan,
including continuous adjustments of the gait and momentum. The targeted capability is suited for
handling prominent terrain features such as gaps and ledges.

Background: Trajectory optimization is apt for combining foresight and dynamism, and has been
tailored to handle contact discontinuities in the software library Trajectory Optimization for Walking
Robots (TOWR) [6]. However, it nominally involves high computational cost and susceptibility
poor-quality local optima. Both issues can be greatly reduced by leveraging expert data to provide
a high-quality initialization to the optimizer, allowing it to quickly reach a favorable solution. This
approach has variously been referred to as “trajectory prediction” [7] or “memory of motion” [8, 9].
In this paper we will use the more explicit term “data-driven trajectory initialization” (DDTI).
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DDTI is effectively behavior cloning, a form of imitation learning known to be susceptible to poor
generalization and robustness in control applications due to narrow state-space coverage by the
expert dataset. These downsides are lessened in the context of trajectory initialization since a degree
of refinement can be computed online, and small perturbations can be mitigated by a lower-level
tracking controller. Other data-driven approaches, such as reinforcement learning, cannot readily be
applied in this scenario due to the difficulty of discovering far-sighted behaviors from scratch.

While the use of temporally-extended actions carries many benefits, it also tends to induce multi-
modality, which in turn causes issues with the use of function approximators. The classic example
is an agent that needs to detour around an obstacle: it can go either left or right, but the average of
these examples is an invalid solution. One recourse is to fit a different local expert model for each
behavior type, but this can require restrictive assumptions or foreknowledge about possible behav-
iors. This might not be appropriate for highly versatile systems such as quadrupeds, whose various
behaviors may be interrelated in either discrete or continuous ways.

Approach: In light of this, we implement a scheme for DDTI of temporally-extended quadruped
behaviors without artificially limiting the expert’s expressiveness. We train a conditional variational
autoencoder (CVAE) to reproduce segments of long trajectories, conditioned on a task that expresses
far-sighted context and relates to the constraints the trajectory must satisfy. Conditional latent dis-
tributions then represent the possible characteristic variations between locally-optimal solutions to
a given task—in essence, the null-space of the expert’s decision. We deploy the CVAE decoder
for what we term Latent-Mode Trajectory Regression (LMTR) and demonstrate that it can be used
in a receding-horizon manner to avoid a sequence of disallowed foothold regions. Afterward, we
identify and discuss additional opportunities improving performance with a latent skill-space.

2 Related Work

Trajectory Libraries: A classic strategy for leveraging precomputed motions is to use a trajectory
library (TL), where expert solutions are retrieved based upon the similarity of their associated tasks
to a novel task encountered online. [10] employed a TL when planning quasi-static walking on rough
terrain locomotion for a small quadruped; however, extensive computation was still required for
selecting a sequence of behaviors in advance of execution. Other applications of TL have included
reaching tasks by either fixed-base arms [7] or humanoids, which must also remain balanced [11].

Trajectory Regression: An increasingly common alternative is to fit a regression model to the
relationship between task and solution. Prospective benefits include better adaptation to the task at
hand, the lack of need for an explicit lookup metric, and reduced memory requirements. Some works
for manipulator path planning regress to the next time step, constructing motion incrementally [12,
13]. Other efforts fit to entire trajectories of fixed scope [14, 9], which may be more appropriate
when subject to dynamic constraints as is true for a drone changing position [8, 15], or a humanoid
taking a step [16]. Alternately, regressors may be used to apply informed bias during sampling
processes [17, 18] or to predict performance attributes of different categories of trajectory [19].

Multimodality: Some DDTI efforts attempt to reconcile regression and multimodality through
methods that fit multiple regressors (a Mixture of Experts) and blend or choose between them based
on the task [9, 15]. This strategy has also been applied to quadrupeds for animating their limbs in
computer graphics [20] and stabilizing their steady-state motion in robotics [1]. By contrast, a con-
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Figure 1: (a) long expert trajectories τ̄ are processed into pairs of tasks x and trajectory segments
τ of reduced scope. (b) fitting a CVAE generates a smooth space of latent modes z that capture the
variability of expert behavior, enabling good reconstruction quality even if two similar tasks were
solved in distinct ways. (c) given a policy π for selecting a mode, the decoder can be deployed for
other tasks seen online. This can be done in a receding-horizon fashion.

2



tinuously varying representation of behavior types (i.e., modes) can be learned using CVAEs [21].
This has been used for predicting [22] or planning [18] wheeled-vehicle motion, as well as in manip-
ulation when demonstration data varies considerably [23, 24]. Our work uses a CVAE in the manner
of [23, 24], but for the starkly different application domain of sustained dynamic legged locomotion.
We differ by using a behavior-selection model that permits multimodality on a per-task basis.

3 Latent-Mode Trajectory Regression

3.1 Expert Solutions

To accommodate problems whose solutions have a structured description, let a trajectory τ be de-
fined as a collection of different-length sequences of vectors

τ = (a1:Na
,b1:Nb

, . . .) s = (Na, Nb, . . .) (1)

where a, b, . . . represent different categories of state variables or solution parameters, and the set
of lengths, s, is termed the “scope”. This section will discuss the use of two different scopes used
for data generation and behavior cloning, respectively, using bar notation to distinguish variables
associated with the former (longer) scope.

The expert data are trajectories τ̄ linking initial states χ̄ and goal states γ̄, i.e., boundary conditions,
across some environment η̄. These data are generated using two complementary sources of random-
ization. Tasks x̄ = (χ̄, γ̄, η̄) are sampled from a parametrized space X̄ defined by the user. Naive
initial guesses τ̄ 0 are augmented with smooth noise ξ̄ before passing them to the optimizer

τ̄ = Optimize
(
τ̄ 0 = h

(
x̄, ξ̄
)

; η̄
)

(2)

where h is a simple heuristic that performs linear interpolation between the boundary conditions and
incorporates the smooth noise in a manner appropriate for the solution structure, i.e., the interde-
pendency of the variable categories (a, b, . . .). Poor-quality results are filtered out of the long-scope
expert dataset D̄ = {x̄, τ̄} based on cost and constraint violation thresholds.

Segmentation is conducted next, mapping D̄ −→ D = {x, τ} to make the scope of the data ap-
propriate for receding-horizon use and to make regressor fitting more tractable. Segmented trajec-
tories τ are extracted by moving a sliding window of scope s along the original data τ̄ of scope s̄.
The solution structure of Eq. 1 may involve asynchronous state variables and require a nontrivial
sliding-window rule; see Sec. 4.1 for quadruped-specific details. s should be long enough for on-
line refinement of τ to meaningfully adapt to errors, but short enough to manage compute expense.
Significantly, γ and η can be defined at a further horizon than can be reached with s, allowing an
additional margin of foresight.

Fig. 1(a) illustrates the extraction of τ and the associated task x = (χ, γ, η) from a full-length
solution. γ represents a goal set (e.g., the SE(2) component of the state) that the segment is moving
toward in a locally optimal manner, and can be extracted from the original trajectory τ̄ beyond the
end of the sliding window. In principle, the horizon of γ should be similar to that of η, which
expresses the degree of sensory foresight. For floating-base problems, (x, τ ) can be expressed in
a coordinate frame defined in relation to the initial state χ. The combination of frame change and
scope reduction densifyD relative to D̄. Further data augmentation can be done by extracting several
alternate choices of γ from the states the expert reaches beyond s, in a manner similar to [11].

3.2 Behavior Cloning for Multimodal Experts

The aim of behavior cloning is to effectively map from any task in a space X to an expert-quality
solution in T , based upon the discrete set of expert task-solution pairs D. Directly fitting a function
approximator to D would produce the regression model f : x→ τ . This approach performs poorly
in the presence of multimodality, i.e., when multiple distinct solutions exist for a given task

(x1, τ 1,a) ∈ D (x1, τ 1,b) ∈ D τ 1,a 6= τ 1,b (3)

which indicates multi-modal behavior by the expert. To accommodate multiple modes under a single
regressor, its output will be conditioned on a secondary input z, the mode or manner of solving
the given task. The relationship fz : (x; z) → τ can then be expressed smoothly as long as the
information within z resolves the ambiguities and discontinuities present in D.
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To avoid restrictive manual assumptions about the form of z, it is desired to learn it in an unsuper-
vised manner. This is done by casting the mode as the latent variable in a conditional variational
autoencoder (CVAE) [21] as in Fig. 1(b). With encoder qθ and decoder pφ, data maps through the
CVAE as

qθ : (τ ;x) −→ (µz,σz) z ∼ N (µz,diag(σz)) pφ : (z;x) −→ τ̂ (4)

with a diagonal-covariance Gaussian as the conditional latent distribution. Model parameters θ and
φ are trained with an L1 reconstruction loss and a KL-divergence regularization term weighted by κ

L =
1

|D|
∑
D

[
‖τ − τ̂‖1 + κDKL

(
N (µz, σz) ||N (0, I)

)]
(5)

This training process essentially disentangles the degrees of freedom between different locally op-
timal solutions that share the same constraints, i.e., the same task, into the mode space Z . Expert
choices of those degrees of freedom are captured by the datasetDz = {x, z}. The decoder pφ serves
as the regression model fz needed for behavior cloning via LMTR.

3.3 Mode Selection Policy

To solve novel tasks during deployment, the expert regressor fz must be paired with a policy for
selecting a mode input, π : x→ z, as in Fig. 1(c).

τ = fz (x, π (x)) (6)

This reveals the LMTR to be the second stage in a hierarchical decision process, with z as the
high-level action and τ as the low-level one. Accordingly, similar options for representing the
(x, z) relationship can be considered as were for (x, τ ), but now with an output space that is much
smoother and low-dimensional.

In [23], an additional function approximator πN : x −→ (µz,σz) is trained to match the output
distribution of the encoder qθ. We emphasize, however, that this forces the learned relationship
for (x, z) to be unimodal despite the capacity for multimodality in the output of fz , which could
be ill-suited to scenarios where the expert uses distinct behaviors for very similar tasks. More
expressive output distributions and alternate training methods could be considered for π, but with
other complications as noted in Sec. 6.

To combine the simplicity of behavior choice that TL provides and the generalization capability of
a regressor, we define π as a nearest-neighbors lookup on the mode experience set Dz .

πnbr (x) = zi | xi = argmin
xi∈Dz

d (xi,x) (7)

As with TL, performance depends strongly upon the distance metric d used in the task space. We use
an L1 norm weighted by W = diag(w) to account for the heterogeneous nature of these variables.

4 LMTR Training

4.1 Expert Quadruped Solutions

The motivation of this work is to learn a viable set of diverse, intelligent skills for a sensor-rich
quadruped which are subject to the robot’s physical limitations and real-world uncertainty. Accord-
ingly, we obtain our expert data using TOWR [6], a trajectory optimization library designed for
legged robots in non-uniform environments. This library, when extended with features that promote
robustness, has been demonstrated to produce dynamic motion realizable on hardware [25].

TOWR parametrizes legged locomotion trajectories as a collection of splines that describe the time-
varying position and velocity of each element—i.e., the floating base and each foot—as well as the
ground-reaction forces at the points of contact. The transitions between contact and swing phases
can occur at asynchronous epochs chosen by the optimizer, permitting the discovery of arbitrary
gaits. Meanwhile, base splines are constructed using polynomials of a fixed duration joined at points
called nodes. The optimization problem enforces multi-contact dynamics via equality constraints,
while inequality constraints limit the forces and kinematics, and integral costs promote smoothness.
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As discussed in Sec. 3.1, segmentation of the expert data facilitates online replanning. Fitting a
regressor to D requires all τ to have consistent structure—the same number, types, and order of
optimzation variables. To achieve this, we use a segmented solution scope of (T,Np), where T is
the total duration and Np is the number of swing phases per leg. We furthermore permit generalized
gaits by assuming each foot’s motion begins and ends in stance—totalling Np + 1 stance phases—
but allowing these phases to start and end asynchronously relative to the base nodes. For simplicity,
segments that stop at the final goal are omitted from D since most of them are shorter than T .

4.2 Task Space

We define ground-plane obstacles as discrete linear features parametrized by an SE(2) pose
{oi = (xi, yi, αi)}. These obstacles do not have a definite width; rather, they express a poten-
tial field that penalizes the proximity of footholds. Full-length expert solutions begin and end in
static stance and must cross two obstacles with randomized spacing and orientation, using scope
s̄ = (7.5 s, 6 swings). After interpolating between the boundary conditions, the heuristic h maps
the smooth noise ξ̄ to the SE(2) components of the base state. Initial base-relative foot positions
are also randomized, and timing variables are initialized to a walking gait that begins by swinging
whichever foot is furthest back from its neutral position.

About 25% of the 5,000 solutions are discarded based on cost or constraint values that indi-
cate poor quality and unrealistic behaviors, such as energetic jumping that the hardware system
is not capable of executing. From the good solutions, 25,000 segments are sampled with scope
s = (0.8 s, 1 swing). Crucially, the robot state at the segmentation epoch can be mid-motion, i.e.,
nonzero base velocity and feet at arbitrary stages of swing or stance. Foot parameters describe a
stance-swing-stance phase sequence that is asynchronous with the base trajectory and the other feet.

4.3 DDTI Models

Data sizes for this problem setup are dim (x) = 35 and dim (τ ) = 264. The LMTR decoder
and encoder are fully-connected neural networks with hidden layer sizes [64, 64, 264, 264] (reversed
for the encoder), and are trained with Adam optimization on Eq. 5 using κ = 0.001 and with 1%
noise added to task inputs. Several choices of latent dimension n are tested, denoted as LMTR-n.
Inspection of the distribution of expert modes z ∈ Dz , shown in Fig. 2, reveals that Z is mainly
used for representing decisions that cannot be unambiguously determined through the task-condition
input to the regressor. For example, a foothold could avoid an obstacle through either a short stride
or a long one, but not an average one—and thusZ shows clear organization in terms of stride length.
The choice of which foot to move next, which usually has a simple dependence on the initial state,
appears nearly uncorrelated and not a good use of the mode-space capacity.

A TL baseline is also considered, i.e.,

fnbr (x) = τ i | xi = argmin
xi∈D

d (xi,x) (8)

(a) LF stride (b) RF stride (c) ∆ yaw (d) ∆ height (e) First foot (f) x-neighbors

Figure 2: The 3D distribution of expert mode choices from the training of LMTR-3, colored based
on properties of the associated trajectory segments. (a-b) The stride length of each front foot varies
steadily across Z—and with independent trends. (c-d) Change in yaw follows a perceptible trend;
change in height does not. (e) The latent mode does not appear to store information about which foot
to move first. (f) shows the modes associated with several tasks from each of three neighborhoods
of X . The yellow distribution demonstrates that πnbr : x −→ z can be multimodal.
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as well as a unimodal regressor f equivalent to 0-dimensional LMTR. The trajectory lookup time
for TL is about 3 ms, as is the combined time for mode lookup πnbr(x) and neural network regres-
sion fz in LMTR. The former method has a memory footprint of about 60 MB; the latter, about
10 MB, the majority of which is the mode library Dz . The weight vector w used in the distance
metric was sampled on a coarse 4D grid with separate dimensions for the task variable categories
χbase, χfeet, η, and γ.

5 Receding-Horizon Planning

The applicability of DDTI to dynamic quadruped trajectories has been demonstrated in [25], where
minimal online refinement was required for successful execution of open-loop plans on hardware.
In this work, focus is placed on extension of the DDTI formulation to accommodate sustained use
and multimodal behavior; the numerous further challenges of control-integrated deployment in sim-
ulation and on hardware are deferred to future work. Experiments thus consist of plan generation
via incremental “rollouts” of each DDTI method, i.e., by deriving the task at each replanning cycle
from a state directly extracted from the trajectory initialization of the previous cycle.

5.1 Rollout Scheme

DDTI of trajectory segments enables behaviors with foresight to be deployed in a receding-horizon
fashion. This replanning approach is suited for mitigating perturbations as they appear on the per-
ceptive sensory horizon. These perturbations may be registered through η, as new obstacles appear,
or through γ, as a mission planner updates the locomotion goal. Multimodal DDTI allows the robot
to instantaneously switch to an alternate strategy for tackling an obstacle, even as it is constrained
by its particular contact state and momentum expressed in χ.

At each iteration of a rollout, using replanning period ∆t, a new plan is needed beginning from some
state χ← τ (∆t) of the previous plan. The environment ahead of the robot is processed to determine
η, which we define as the next two discrete obstacle features η ← (oi, oi+1). A mission planner then
updates the goal location γ, placing it on the world x-axis a fixed distance ahead of the robot. Given
this new task x = (χ, γ, η), trajectory initialization is computed with one of the DDTI methods:
Eqs. 6 and 7 for LMTR or Eq. 8 for TL. The rollout testbed randomly generates new obstacles ahead
of the robot, varying their world-frame orientation and forward spacing. Though the segment scope
extends beyond ∆t, only the solution variables with timestamps within the replanning window are
accumulated in the rollout.

The parameters and choices in this scheme must balance several considerations. A more distant
goal position and environment perception window would enable greater foresight, but only subject
to sensing limitations and the modeling demands associated with increased dim (x). The segment
scope s need not reach this horizon (see Fig. 1(a)) as the states within τ are implicitly appropriate
waypoints for x. In an integrated deployment, longer s would allow online refinement of τ to have

Figure 3: An example rollout of the LMTR replanner over many obstacles, which are potential fields
penalizing foothold proximity. The replanner extends the base trajectory (black dots) forward while
also placing footholds (x’s colored per foot) away from the obstacles (gray lines). The planner’s
structured outputs remain similar to expert data that meets constraints and minimizes costs. Colored
bars indicate the contact phases of each foot; outlined white boxes give the swing phases.
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greater influence in correcting approximations, but would also increase its compute cost, along with
dim (τ ). The replanning period ∆t is constrained by the trajectory compute cost, which is mostly
determined by the amount of refinement required. It is most relevant for handling perturbations to
χ that would occur during execution; however, we note that small perturbations of this sort could
be handled by a tracking controller. Major perturbations away from the experience manifold of X
might be more appropriately handled by a recovery controller than a temporally-extended planner.

An example output obtained with this rollout scheme using ∆t = 0.3 s is shown in Fig. 3. The
base path shows that the motion is smooth and sustained; velocity shaping is apparent in the closer
spacing of nodes used during careful movement over the obstacles, which is necessary due to the
more constrained foot locations. Footstep markers remain distant from the obstacles in most cases.
The foot phase plot further shows that the trajectory parametrization allowed expressive variation
of gait timings. Concurrent pairs of swing phases, such as in the first half of the rollout, indicate a
trot-type gait; a cascading pattern of swing phases (near the end) indicates a walking gait.

5.2 Rollout Performance

We assess aggregate performance in terms of obstacle avoidance and the violation of kinematic lim-
its. Due to the more temporally-extended influence of footholds upon the whole trajectory, we hy-
pothesize that these two constraint types might be less tractable to resolve during online refinement
than short-timescale dynamics violations caused by stochasticity of the regressor. Because the ob-
stacles are defined as potential fields, a real-valued metric is used to express obstacle violation—for
each obstacle encountered in a rollout, the minimum distance between each foot’s closest foothold
and the obstacle line is accumulated. Similarly, for each 0.1 s time-step of the base trajectory, the rel-
ative forward positions of the contacting feet are computed and any violation of the nominal±0.2 m
range relative to their neutral locations is logged.

These two metrics are evaluated for a unimodal regressor, for LMTR with varying mode dimension-
ality, and for TL. Several weight vectors w are considered for the task-space distance utilized by the
latter two methods. 100 rollouts are generated for each replanner, with each rollout lasting 30 s (100
replanning cycles), corresponding to around 11 m traveled and about 13 obstacles crossed.

As shown in Fig. 4(a), the unimodal regressor commonly selects footholds very close to the obstacle,
while LMTR and TL both strongly bias their footholds away. Performance of LMTR plateaus
at around 6 to 12 latent dimensions, at which point it roughly matches TL in terms of obstacle
avoidance. Fig. 4(b), however, reveals that TL has a much higher rate and degree of kinematic
violations. Performance trade-offs can be made by prioritizing some categories of task variables
over others in the weight vector w used for nearest neighbors, as shown in Fig. 4(c), where favoring
χ or η respectively promotes either the kinematic or the obstacle metric. Altogether, LMTR offers
about 5x milder kinematic violation than TL for a given level of obstacle avoidance performance.
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Figure 4: Obstacle avoidance margin and kinematic violation margin are evaluated using several
replanner configurations. Star notation indicates selection of the best weight vector for that replanner
type and performance metric. (a) probability distribution of the closest foothold to each obstacle
being a certain distance away, accumulated across all four feet. (b) probability distribution of a
foot violating its nominal range of motion by a given amount; y-axis is zoomed in to expose these
uncommon violations. (c) rates of threshold violations for the two performance metrics, where each
point per series represents aggregate performance under a different nearest-neighbors weight vector.
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Figure 5: Snapshots from a typical rollout of LMTR-6. The expert’s conservative kinematic limits
are indicated by blue boxes; friction cones and planned contact forces are shown in red.

Several example rollouts of LMTR can be seen in the attached video supplement, showing further
qualitative evidence of approximate feasibility and local optimality of the trajectory initializations it
generates. Fig. 5 provides snapshots of one such rollout.

6 Discussion

LMTR matched the simpler TL approach in achieving obstacle avoidance and exceeded it in terms of
kinematic feasibility, thanks to its continuous output space. A crucial point for further study is how
well each method scales to a wider variety of tasks—e.g., with terrain height or slope included in
x—and the new behaviors they warrant. Selective retention or importance-weighting of experiences
could help to moderate the growth of TL or to improve the fit of LMTR to less common scenarios.

The fact that neither TL nor LMTR provided completely consistent obstacle avoidance suggests that
performance may have been bottlenecked by gaps in the expert knowledge. The ease and feasibility
of generating a larger variety of expert data depends on how well the offline optimization process
handles increasingly broad task spaces, which cause greater nonconvexity. Key to this is the rate at
which the noisy initialization heuristic in Eq. 2 lands in the basins of attraction of good-quality local
optima, i.e., the efficiency of trajectory-level exploration. One possibility is to use noise in the latent
mode space Z to push the boundaries of known behaviors and iteratively improve the LMTR in a
reinforcement learning scheme related to hierarchical approaches such as [26].

Another clear avenue for improvement is the inference process relating tasks to modes of behav-
ior, as geometric norms are not an ideal similarity measure for large, heterogeneous task descrip-
tions. Fitting a stochastic model of π : x −→ z could make the task distance implicit within
learning problem. Multimodality on a per-task basis would require a more expressive model here
than the Gaussian used in [23, 24]. Alternative choices such as mixture models or normalizing
flows [27] might meet these needs, but carry with them nontrivial challenges. This is because their
increased capacity, when used for conditional density estimation, risks overfitting to the variation of
the condition—which ultimately relates to the concept of the difference between two tasks.

One more potential benefit of modelling multiple viable behaviors per task is the opportunity to
make a choice that minimizes the need for online refinement [28] or the cost of execution [19, 9].
Depending on evaluation costs, these critera could be used for actor-critic reinforcement learning
of a multimodal policy π [27]. Lastly, a smooth model of this relationship could open the door to
behavior selection based upon robustness to noise or approximation error in the task description.

7 Conclusion

We have presented a data-driven approach to quickly generate initializations of legged locomotion
trajectories that anticipate prominent obstacles. The approach is tailored for sustaining dynamic
motion indefinitely in a receding-horizon fashion. Our results demonstrate that it is vital to account
for the high degree of multimodality when applying an expert regressor to the problem of general-
ized, inherently-discontinuous quadrupedal locomotion, and that this can be done in an unsupervised
manner by using a variational autoencoder conditioned on the task. Future work on the DDTI for-
mulation will aim to remove the dependence on nearest-neighbors (and the task-mode library) and
to more deliberately leverage the diversity of behaviors available for a given task. Our efforts to-
ward full control pipeline integration and hardware deployment will involve overcoming significant
remaining challenges: online refinement of plan segments with asynchronous structure, handling of
replanning latency, and robust vision-based extraction of terrain features suited for task description.
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