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Abstract— In the context of robotic control, synergies
can form elementary units of behavior. By specifying task-
dependent coordination behaviors at a low control level, one
can achieve task-specific disturbance rejection. In this work
we present an approach to learn the parameters of such low-
level controllers by demonstration. We identify a synergy by
extracting covariance information from demonstration data.
The extracted synergy is used to derive a time-invariant state
feedback controller through optimal control. To cope with the
non-Euclidean nature of robot poses, we utilize Riemannian
geometry, where both estimation of the covariance and the
associated controller take into account the geometry of the
pose manifold. We demonstrate the efficacy of the approach
experimentally in a bimanual manipulation task.

I. INTRODUCTION

Synergies are functional groupings of elements that are
constrained to work as a single unit [1]. Their existence
potentially explains how the central nervous system is able
to perform tasks accurately despite the redundant and noisy
sensorimotor system [1]–[4]. They also appear at task level:
grasping and manipulation require coordination between
objects in the environment and the degrees of freedom of
the hands.

Similarly, in the context of robotic control, synergies can
be used as elementary units of behavior. By specifying task-
dependent coordination behaviors at a low control level, one
can achieve task-specific disturbance rejection. In this work
we present an approach to learn the parameters of such
synergistic controllers by demonstration.

Our approach extracts task-space synergies from demon-
stration data, and uses them to generate an optimal state
feedback controller. It relies on the Linear Quadratic Regu-
lator (LQR)—a control paradigm that simplifies the design
of optimal controllers for linear dynamical systems. This
optimal regulator is found by minimizing a cost function
parameterized by a positive definite tracking cost matrix Q
and a control cost matrixR. Most often, the required tracking
precision is specified for each state variable individually as a
diagonal tracking cost matrix Q. We instead propose to ex-
ploit the off-diagonal elements to specify the coupling among
state variables. The ability to specify synergies through Q
while guaranteeing stability makes the LQR well suited for
our goal.
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Task-space synergies require a suitable parameterization
of robot pose, which involves both position and orientation.
Since no parameterization of orientation exists that is global
singularity free and Euclidean, the typical methods available
for imitation learning and LQR cannot directly be applied.
We build upon the probabilistic framework for imitation
learning on Riemannian manifolds introduced in our previous
work [5]. This framework allows us to learn distributions
over robot poses whose support is contained in a regular
geodesic ball [6]. In practice, this restricts the orientation
data to lie within a ±π radius of the empirical mean (the
Riemannian center of mass). This is achieved by encoding
robot poses as elements on the manifold R3 × S3—The
Cartesian product of the 3-dimensional Euclidean space and
the unit-quaternion manifold S3, respectively.

Different approaches for LQR on SO(3), SE(3) or cov-
erings of these groups exists. Saccon et al. [7] derive a LQR
controller on SO(3) through Pontryagin’s Maximum Princi-
ple. Marinho et al.in [8] use a dual-quaternion representation
to derive a LQR tracking controller. The latter involves
converting the dual-quaternion transformation invariant error
into an affine time-varying system. Such representation can
be compared to a pose manifold, yet the position quaternion
does not represent well the Cartesian space, and the method
requires the manual specification of the control and state
error costs. Similarly, Wang and Yu [9] present a dual
quaternion controller for rigid-body motion stabilization and
tracking, built on a screw theory formulation.

Our approach to learn synergies from demonstration in-
volves the estimation of stiffness and damping matrices
from the correlation observed in the demonstration data.
Similarly, Rozo et al. [10] and Saveriano and Lee [11]
estimate the stiffness directly from the covariance informa-
tion. Smoother stiffness profiles can be obtained from the
covariance information through LQR as demonstrated by
Medina et al. [12], Calinon et al. [13] and Zeestraten et al.
[14]. Kronander and Billard [15] use a combination of tactile
and kinesthetic teaching to communicate the desired stiffness
of the robot along a trajectory. Unlike these previous works,
the presented method considers coordination among position
and orientation of multiple end-effectors.

Our contributions are two-fold: i) We demonstrate that the
Riemannian Gaussian can be used to encode rich synergies
of task-space manipulation that involve positions and orien-
tations; ii) We show how infinite horizon LQR can be used to
regulate synergies that are defined on Riemannian manifolds.
The method used to perform statistics on manifolds is re-
stricted to simply-connected manifolds [6]. We demonstrate
the efficacy of our approach in a bimanual manipulation task,
where three different coordination patterns between two end-
effector poses are taught. This paper is accompanied by a
video of the experimental evaluation, and source codes of
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TABLE I: Overview of the exponential and logarithmic maps at the
origin e, and the action for the Riemannian manifolds considered in
this work. s(·), c(·), ac∗(·) are short notations for the sine, cosine,
and a modified version of the arccosine (see Sec. II), respectively.
The elements of S3 are quaternions, ∗ defines their product, and
g−1 the quaternion inverse of g.

the approach is available through
http://www.idiap.ch/software/pbdlib/.

The remainder of this paper is organized as follows:
In Section II we introduce some preliminaries of Rieman-
nian geometry and statistics. Section III introduces how we
propose to learn and reproduce task-space synergies. The
approach is evaluated experimentally in Section IV, and we
conclude with a discussion in Section V.

II. PRELIMINARIES

Our objective is to use infinite horizon LQR for system
states that are defined on Riemannian manifolds [16]. Unlike
the Euclidean space, the Riemannian Manifold is not a
vector space where sum and scalar multiplication are defined.
Therefore, we cannot directly apply Euclidean methods to
data defined on a Riemannian manifold M. However, these
methods can be applied in the tangent spaces of the manifold.
These are Euclidean and provide a way to indirectly perform
computation on the manifold. We indicate the manifold by
M, and its elements in bold typeface, i.e. p ∈ M. Tangent
spaces are defined at each point p ∈ M and indicated by
TpM. Elements on the tangent space are displayed in fraktur
typeface, i.e. g ∈ TpM. Finally, matrices are displayed as
capital boldface (greek) letters.

For each point on a Riemannian manifold we can define
an exponential map Expg(·) : TgM → M, a distance
preserving map between the tangent space and the manifold.
Expg(p) maps p to p in such a way that p lies on the
geodesic—the generalization of straight lines—through g
with direction p, and the distance between g and p is
‖p‖ = 〈p, p〉g , see Fig. 1a. The inverse mapping is called the
logarithmic map, and is defined within the injectvity radius
of the exponential map [6].

In general, one exponential and logarithmic map is re-
quired for each tangent space. For homogeneous manifolds,
however, their function can be moved from the origin e to

=Logg(p)

p=Expg( )

g
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Fig. 1: Manifold mappings and action function illustrated on the
2-sphere. (a) The exponential and the logarithmic map provide local
one-to-one mappings between the manifold and its tangent space at
point g. (b) An action Ahg (pg) maps pg (a point defined relative
to g) to ph by moving it along a geodesic (dotted lines) until it
reaches a point such that the distance between ph and h equals
the distance between pg and g (both distances visualized by black
lines).

other points on the manifold with

Expg(pg) = Age (Expe(pg)) , (1)

Logg(p) = Loge
(
Aeg (p)

)
, (2)

where Ahg
(
pg
)

is called the action function (see Fig. 1b).
The manifolds used in our experiments are the 3-

dimensional Euclidean space for position, and the 3-sphere
to represent orientation in terms of unit-quaternions. Table I
gives an overview of the required mappings.

Orientation controllers used for unit-quaternions can suffer
from the ‘unwinding’ problem [17]. The manifold of unit-
quaternions, S3, provides a double covering of the space
of rotation matrices SO(3), and both q and −q represent
the same orientation. If the control objective is to steer to
q, while the system is at −q (which also represents the
desired orientation), the controller will leave the desired state
to ‘unwind’ to q. Such behavior can be avoided by explicitly
taking into account the sign change, at the cost of making
the control law discontinuous. To ensure that the distance
between two antipodal rotations is zero we use

arccos∗(ρ)

{
arccos(ρ)− π ,−1 ≤ ρ < 0

arccos(ρ) , 0 ≤ ρ ≤ 1
(3)

in the definition of our logarithmic map for S3.
The maximum entropy distribution on a Riemannian man-

ifold, given a center and a covariance, is a distribution of
the exponential family [6]. Although the exact solution is
computationally impractical, it is often approximated by a
Gaussian-like distribution

NM(x;µ,Σ) =
1√

(2π)d|Σ|
e−

1
2 Logµ(x)>Σ−1 Logµ(x), (4)

where µ ∈M is the Riemannian center of mass, and Σ the
covariance defined in the tangent space TµM (see e.g. [18]–
[20]). In [5], we showed how operations commonly used in
probabilistic imitation learning can be generalized to Rie-
mannian manifolds. Note that uniqueness of the mean is only
guaranteed if support of the distribution lies within a regular
geodesic ball of radius r < π

2
√
κ

(with κ the curvature of
the manifold; κRn = 0, κS3 = 1). Practically, one can verify

http://www.idiap.ch/software/pbdlib/


(a)

1 0 1 2 3

1̇[1/s]

1

0

1

2

3

4

5

2̇
[1
/
s]

(b)

Fig. 2: Visualization of step responses obtained by Riemannian
LQR on the system state manifold, Ms = S2 × R2, for two
different covariance matrices (red and blue ellipsoids). The initial
state of the system is indicated by p and the desired state by µ. a)
Response path in S2 and TµS2. The response on the manifold is
visualized by the solid lines, and the response on the tangent space
by the dotted line of corresponding color. b) Response in R2 which
is diffeomorphic to T0R2.

this by ensuring the distance between the computed mean and
the data is contained in r, i.e. r = maxn dist(µ,xn) < π

2
√
κ

[6]. For unit-quaternions the maximum alloted distance is
π/2 which corresponds to a rotation of π. Although Euler
angles face a similar limitations, they cannot be used in our
application because they are not defined in a single vector
space1.

The Cartesian product of two Riemannian manifolds is
again a Riemannian manifold. For example, a robot pose can
be represented by the Cartesian product of a 3 dimensional
Euclidean space and a hypersphere, i.e. p ∈ R3 × S3. The
corresponding Exp(), Log() of the Cartesian product are
obtained by concatenating the individual functions, e.g.

Log[
ea
eb

]([a
b

])
=

[
Logea(a)
Logeb(b)

]
.

III. LEARNING SYNERGETIC CONTROL BY
DEMONSTRATION

We start with a training set consisting of N data points,
x ∈ M. This set potentially contains synergetic coupling
among the manifold dimensions. Our aim is to find a
controller that preserves these synergies. To identify them,
we estimate the center µ ∈ M and covariance Σ ∈ TµM
of a Riemannian Gaussian using the Maximum Likelihood
Estimate (MLE) [5]. The covariance matrix encodes the
local synergies around the estimated center. Similarly to
our previous work [13], [14], we use LQR to replicate the
encoded behavior. LQR is a controller for linear systems of
the form ξ̇ = Aξ +Bu that optimizes a cost function that
is quadratic in both state ξ and control input u,

c =
1

2

∫
(ξ>Qξ + u>Ru) dt. (5)

The solution to this optimal control problem is a state-
feedback controller of the form u = Lξ. Its gain matrix, L,

1Euler angles are 3-tuples (i.e., not 3-dimensional coordinate vectors) and
therefore cannot be used to define a covariance matrix—doing so would
yield an incorrect encoding of the observed distribution.

is obtained by solving an algebraic Riccati equation (see
e.g. [21]).

The required linear system cannot be defined on the
manifold, since it is not a vector space. However, we can
exploit the linear tangent spaces to achieve a similar result.
The state error between the desired state pd and current state
p can be computed using the logarithmic map e = Logpd(p)
that projects the minimum length path between pd and p
into the Euclidean space Tpd

M. We define the linear time-
invariant system,[

ė
ë

]
︸︷︷︸
ṡ

=

[
0 I
0 −M−1C

]
︸ ︷︷ ︸

A

[
e
ė

]
︸︷︷︸
s

+

[
0

M−1

]
︸ ︷︷ ︸

B

u. (6)

with inertia matrix M and damping matrix C. The aug-
mentation with ė makes the system state manifold to be
Ms =M× Rd. As a result the linear system is defined in
Tp̄d
Ms with p̄d ∈Ms (the original desired state augmented

with a desired velocity), and the mapping from the manifold
to this tangent space

s = Logp̄d
(p̄) . (7)

The covariance Σ of a Riemannian Gaussian NM(µ,Σ)
describes the variance and correlation of the state variables
in a tangent space defined at µ ∈ M. By assuming that
the desired LQR tracking performance can be related to the
variance, we can define it using the covariance. We formulate
the cost function (5) in the tangent space Tµ̄Ms using (7)

c =
1

2

∫ (
Logµ̄(p̄)

>︸ ︷︷ ︸
s>

Q Logµ̄(p̄)︸ ︷︷ ︸
s

+ u>Ru
)

dt, (8)

with µ̄ =

[
µ
0

]
, Q =

[
Σ−1 0

0 0

]
,

and R the control cost matrix. With the dynamical system
(6) and cost function (8), the optimal state feedback con-
troller

u = Ls
(7)
= LLogµ̄(p̄) , (9)

can be computed. Similarly to classical infinite horizon LQR,
the gain matrix, L = R−1B>X , is obtained by solving the
algebraic Riccati equation

AX +AX −XBR−1B>X +Q = 0. (10)

The control law (9) is only valid when Log(p̄) is defined.
For SO(3) this boundary lies on π. The original logarithmic
map for the unit-quaternion manifold S3 is not defined at
the antipode of its origin (which corresponds to 2π rotation).
Since unit quaternions provide a double covering of SO(3),
this point can be avoided using the modified arccosine (3).

Fig. 2 demonstrates the approach on the manifold S2×R2.
It shows how the response of the system changes based on
the shape of the covariance matrix. LQR is computed in the
tangent space of the attractor µ. Its response is visualized in
the tangent space, and projected on the manifold.

Note that LQR controllers defined on (a covering of)
SO(3) can only achieve local asymptotic stability, since no



Fig. 3: Visualization of the three different behaviors: i) horizontal
planar translation (in blue), ii) vertical planar rotation (in red), iii)
coupled rotation and translation (in green).

continuous time-invariant feedback controller can achieve
global asymptotic stability on compact manifolds such as
SO(3) [17]. Although such controllers can achieve almost
global asymptotic stability, they also possess unstable equi-
libria [22]. Similarly, no globally stable continuous time-
invariant feedback controller exists on R3×S3, or the space
of dual quaternions [23]. However, the attraction domain
of the unstable equilibria is nowhere dense (see e.g. [22]).
Therefore, we consider the absence of global convergence a
theoretical limitation that has no practical consequence to the
learning and reproduction of synergies from demonstration.

IV. EVALUATION

A. Synergies in Bi-manual Manipulation
The presented method is tested in a bimanual task. Our

aim is to demonstrate the variety of synergies that can be
learned and reproduced using our approach.

The experimental setup consists of two Barrett WAMs
with three fingered hands. Together, the two end-effectors
hold a ball. We evaluate three different synergies: i) horizon-
tal planar translation; ii) vertical planar rotation; iii) transla-
tion coupled with rotation. The setup with an illustration of
the coordination patterns is shown in Fig. 3.

The synergies are taught through kinesthetic teaching [10].
For each synergy we demonstrated the tolerated motion
of the hands around a desired ball pose. For example,
behavior iii) is demonstrated by repeatedly moving both
hands unidirectionally away from the center while rotating
along the axis of motion. The demonstration data consist of
hand-pose pairs which are defined at the hand palms.

The demonstration data of the bi-manual skill lie on the
12-dimensional (d = 12) manifold

Mbm = R3 × S3︸ ︷︷ ︸
Pose 1

×R3 × S3︸ ︷︷ ︸
Pose 2

. (11)

For each behavior we computed the MLE of the mean and
covariance of the Riemannian Gaussian NMbm

(µ,Σ), and
added 1·10−3Id as prior to the covariance. This regularization
term prevents high gains in the state variables that have very
low variance; it bounds the gains found through LQR.

The resulting models are visualized in Fig. 4. The covari-
ance of the position clearly shows the preferred direction
of motion: i) motion in the horizontal plane; ii) motion in
the vertical plane; iii) motion along one axis. Similarly, the
rotational covariance provides information about the alloted
rotation: i) no rotation in any direction; ii) rotation in a single
plane; iii) rotation around a single axis.

The learned synergies appear in the correlation matrices2.
For i), the planar coupling between the hand positions results
in the strong positive correlation between xL,1 and xR,1,
and xL,2 and xR,2. For ii), the synergy involves a rotation
around the global x1 axis. This is correctly captured in
the correlation between the ωL,1, and ωR,2. Furthermore,
there exists a strong negative correlation between the x3

axes of the left and right hand. This indicates the opposite
upwards/downwards motion made during the rotation. Note
that the rotation of the hands around the ball created a
circular motion around its center. This requires a nonlinear
coupling between the x2 and x3 of both hands, something
that cannot be encoded in a single Gaussian. For iii), strong
correlation is observed between x2,L and x2,R, indicating the
motion along the axis of translation. The strong correlation
between x2,L, x2,R and ω2,L, ω2,R establishes the coupling
between the translation and rotation.

To reproduce the demonstrated synergies, we employ the
Riemannian LQR presented in Section III. The system state
manifold for the bimanual skill

Ms = R3×S3︸ ︷︷ ︸
Pose 1

×R3×S3︸ ︷︷ ︸
Pose 2

× R3×R3︸ ︷︷ ︸
Pose 1 velocity

× R3×R3︸ ︷︷ ︸
Pose 2 velocity

, (12)

consists of the skill-manifold augmented with the pose
velocities. We define a linear system in the tangent space
Tµ̄Ms (6), where M and C are the end-effector inertia and
damping, which we approximate by

M = diag(1.17, 1.17, 1.17, 0.009, 0.008, 0.005,

1.17, 1.17, 1.17, 0.009, 0.008, 0.005),

C = diag(20, 20, 20, 1, 1, 0.1, 20, 20, 20, 1, 1, 0.1),

respectively. We run the controller with a frequency of
500 Hz.

The control cost matrix Q is constructed from the inverse
covariance matrix of the Gaussian describing the desired
synergy

Q =

[
Σ−1 0d×d
0d×d 0d×d

]
, (13)

hereby setting a zero cost on the desired velocity. Further-
more, we manually defined a constant control cost matrix

R = diag(
1

80
,

1

80
,

1

80
, 12.5, 12.5, 25,

1

80
,

1

80
,

1

80
, 12.5, 12.5, 25),

which was the same for all three synergies.
By solving the LQR problem we obtain the gain matrix

L ∈ R12×24, which we use to compute the control command
u = [u>L,u

>
R]> ∈ R12. The desired joint torques are

computed using

τ = τ g(q) + J(q)>u, (14)

with τ g the torques required for gravity compensation, J the
manipulator Jacobian, and q the joint angles.

2The covariance matrix combines correlation −1 ≤ ρij ≤ 1 among
random variables Xi and Xj with deviation σi of random variables Xi,
i.e. it has elements Σij = ρijσiσj . We prefer to visualize the correlation
matrix instead of the covariance matrix, since it only contains the correlation
coefficients and highlights the coordination among variables.
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(a) Figures depicting the center and covariance of the position and orientation. The colored ellipsoids show the covariance of the left and right
end-effectors in red and blue, respectively, with their boundary representing one standard deviation. The orthogonal red, green and blue lines
indicate the end-effectors mean orientation. The colored ellipsoids at the end of each line depict the rotational covariance using
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(b) Correlation matrices. The entries related to the position and orientation of the left and right end-effectors are labeled xR/L and ωR/L,
respectively.
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(c) Reproduction examples. The orthogonal red, blue and green lines originate from the end-effector position and visualize the end-effector
orientation. The lines represent the end-effector x1, x2 and x3 axes respectively.

Fig. 4: Visualization of coordination encoding described in Sec. IV-A. The three behaviors (i)–(iii) are ordered left-to-right.

Typical reproductions of the encoded synergies are visu-
alized in Fig. 4c and in the video accompanying the paper.
Fig. 5 shows the step response of the real system and the
linear system (6) for behavior iii). The figure shows the stable
response of the real system. Furthermore, the transient of the
real system and the linear system are similar. The steady-state
errors of the real system are due to the approximated inertia
matrix.

V. DISCUSSION AND CONCLUSION

We presented an approach to learning task-space synergy
controllers from demonstration. We achieved this by exploit-
ing a Riemannian geometry method to combine different

manifolds through the Cartesian product, which makes the
approach easily adaptable to a variety of different manifolds.
For example, all experimental evaluations of LQR presented
in this work are performed using one single piece of code.
Changing from the toy-example to the bimanual manipula-
tion example solely required specifying a different system
state manifold.

The presented approach relies on the ability to measure
minimum distances on the manifold. This is not naturally
achieved on SE(3) because there exists neither a bi-invariant
metric nor a natural left or right invariant metric [24]. In
this work we choose to use a left-invariant metric because
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Fig. 5: Step responses of the real and simulated linear system, vi-
sualized in the tangent space of the target state. The elements e1–e3,
and e4–e6 correspond to the position and orientation, respectively.

it allows us to encode the synergy models independent of
the inertial frame. In addition, we need to specify a relative
weighting of the positional and rotational components. Since
a similar trade-off is faced when balancing torques and
forces through R, we choose to equally weight position
and orientation contributions in the metric. As a result,
we can directly use the metric resulting from our pose
manifold R3 × S3. The proper weighting is postponed until
the inevitable tuning of the control cost matrix.

The control cost matrix remains an open parameter that
requires manual tuning. In our experimental evaluation, we
set the values of R in such a way that the control effort
is well balanced for the translation and rotational degrees
of freedom. The fact that we could use a single R for the
three different synergies shows that its selection is more
system than task-dependent. In practice, one could specify
a fixed system-dependent ratio Rf for the control variables
and allow the user to control the overall control cost of the
system by a single parameter β, i.e. R = βRf . Here, R
should be bounded to prevent unstable controllers due to
actuator limitations of the real systems.

Throughout the paper, we focused on the derivation of
a controller for a single synergy. Real manipulation tasks
will require a variety of synergies along a desired trajectory.
By encoding manipulation tasks in a Gaussian Mixture
Model (GMM), representing the joint distribution of time
and pose P (t,p), one can for example obtain a time depen-
dent synergy by computing P (p|t) using Gaussian Mixture
Regression (GMR) [5]. In situations where regression is
computationally demanding, one could run the regression at
a relative low rate, while the presented controller ensures a
synergetic response to disturbance.
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