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I. MOTIVATION
Remotely operated vehicles (ROVs) are becoming more

commonly used for underwater tasks. Such tasks range
from inspection and maintenance of underwater cables and
pipelines, to underwater archaeology and marine biology.
Most of such tasks require the use of the ROV’s manipulator
arms, in most cases in combination with the use of a tool.

Often ROVs are directly teleoperated from an off-shore
supporting vessel, something that makes the cost of utilizing
an ROV prohibitively high. This cost can be reduced by
moving the teleoperation infrastructure to an on-shore facility
and communicating with the ROV remotely. Current satellite
communications technology suffers from large latencies and
deems traditional direct ROV teleoperation infeasible.

We are developing a novel teleoperation paradigm within
which no direct teleoperation of the ROV’s DOFs is required
but control is locally handled (onboard) using a probabilistic
representation of task/skill primitives. Such a representation
can adapt to task variations and is robust against intermittent
communication. Within the DexROV project [1], we are
investigating an efficient encoding of manipulation tasks that
is learned via programming by demonstrations. We incremen-
tally build our representation from demonstrated motions as
hidden semi-Markov models (HSMM), using an online DP-
Means algorithm [2], and generate motion plans by stochasti-
cally sampling from the learned model (see [3] for the batch
version in contrast). The generated motion is tracked by an
infinite-horizon linear quadratic regulator (LQR) that yields
smooth trajectories with varying stiffness/compliance charac-
teristics learned from the demonstrations. With this approach
we are able to add datapoints incrementally, without the need
to re-train the model in a batch fashion, and by discarding
the demonstration datapoints after observation. We show how
such skills can be learned and how this model can decouple
the local control from the teleoperation setup. In fact, with
our approach only a small set of model parameters needs to
be communicated from the operator side to the teleoperated
system. This makes the overall method robust to intermittent
or failing communication.

II. APPROACH
We developed a method that leverages the advantages of an

online HSMM building algorithm, the DP-means clustering
[2], to arrive to a hard clustering approach. A HSMM is
incrementally built by incorporating datapoints ξt ∈ RD,
where D is the dimensionality of the problem at hand. For
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Fig. 1. The Baxter robot being taught how to perform hot-stabbing motions.
The orange cylinder is a mock-up of the hot-stab plug with three receptacles
mock-up shown on the hot stab panel. The inset image shows a rendering
of the underwater evaluation panel used in DexROV, housing hot-stabs with
different handles and rotational switches.
each new datapoint, the squared Euclidean distance to the
HSMM cluster centers is calculated. If this distance is greater
than a threshold based on the size/range of the motion, a new
cluster is added to the HSMM. If the distance is lower, then
the cluster components, µi and Σi (and cluster prior πi),
are updated according to the MAP estimate described in [4].
This results in a model that is incrementally expanded with
more clusters if the need arises, can be incrementally built
–for example in a number of demonstrations– and is built
online, i.e. no batch processing step is needed, while no data
is stored. This makes the approach particularly appealing for
incrementally growing sets of demonstrations.

The parameters of an HSMM are described by Θ =
{{ai,j}Kj=1,Πi,µi,Σi, µ

D
i ,Σ

D
i }Ki=1. Here, we optimize the

parameters online based on the DP-means estimate. For each
datapoint that is added to the HSMM, we estimate to which
Gaussian component it most likely belongs. This way, for
each datapoint ξt we can estimate the state qj and the
previous state qi. To build up the transition probabilities,
ai,j , we keep a matrix ci,j , c ∈ RK×K , that counts the
number of state transitions that are not self-transitory. The
initial emission probabilities Πi are estimated in a similar
manner, by keeping track of the starting component of each
demonstration sequence. A univariate Gaussian distribution
N (µD

i ,Σ
D
i ) is used to model each state duration by keeping

statistics over the state transitions and bypassing the com-
putationally expensive batch training procedure. This way,
as demonstrations are being performed and the underlying
HSMM is being built, we keep track of each state duration
and accordingly update the statistics of each state. This is
done using a running statistics method to compute the mean
and variance for each state duration. This requires that we
only keep track of the total number of samples while we
incrementally add new values. Consequently, our approach
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Fig. 2. Left: Kinesthetic teaching and motion generation for the hot-stabbing skill. Top row: The left arm of Baxter is used to teach the hot-stabbing
motion. Bottom row: Execution of the hot-stabbing motion, using the learned HSMM model, on the teleoperated side (right arm). Right: Evaluation trials,
10 motions per receptacle in blue lines, starting from randomized initial states.

TABLE I
RMSES OF MULTIPLE AVERAGED TRIALS.

Receptacle Number #1 #2 #3
Reproductions, RMSE 0.77cm 0.74cm 0.99cm

does not need to store any datapoint while all learning is
performed online.

By stochastically sampling from the HSMM for T time
steps, we obtain a sequence of states to be visited, q1 ... qT .
This step-wise reference trajectory N (µ̂qt , Σ̂qt) can be
smoothly tracked using an infinite-horizon linear quadratic
regulator with a double integrator system [5].

III. EXPERIMENTAL SETUP & EVALUATION
We use the two-armed Baxter robot as a working example

of a teleoperation system. We control Baxter’s arms by com-
pensating the effect of gravity, allowing us to demonstrate
motions kinesthetically. We use the left arm as the operator’s
side and the right arm as the teleoperated end.

To demonstrate our approach, we chose one of the most
frequently executed tasks in underwater ROVs. This is the
task of inserting a hot-stab plug to a hot-stab receptacle. Hot-
stabbing is used to provide hydraulic actuation to most of the
tools used in underwater facilities.

The operator kinesthetically demonstrates the hot-stabbing
skill. 6 hot-stabbing demonstrations –2 for each goal– are
provided, starting from a similar neutral joint angle config-
uration and reaching three previously defined goal positions
on the hot-stab panel mock-up as shown in Fig. 1.

As the demonstrations are performed, the model of the
skill is being built. As new demonstrations are made avail-
able, the model incrementally grows. The transition proba-
bilities ai,j and the state duration parameters µD

i and ΣD
i

are incrementally updated accordingly. In the hot-stabbing
experiment, a model with 14 Gaussians was learned. Fig.
2 (left) presents the learned model along with 30 generated
motions used for evaluation.

The model parameters are then communicated to the
reproduction side for motion generation. The subsequent
motion control is handled locally on the remote side, while
only the model parameters need to be communicated at
intermittent time. The remote arm (right) then performs
the manipulation motion, while computed varying stiffness
and damping profiles of the controller allow the task to
be regulated in accordance with the required precision. In
essence this allows us to control lazily along task directions
that do not matter and accurately along the important task
directions, by following a minimal intervention principle [6].

We simulate a failure in communication as the operator
directly teleoperates the remote arm. As soon as the commu-

nication fails, our system samples the learned model, starting
from the current state, and generates a motion that continues
the execution of the hot-stabbing task. Note that the model
here is mirrored for the teleoperated side, i.e. the right arm
of the robot. Trial snapshots are presented in Fig. 2 (left).

To evaluate the efficiency of the learned model we com-
pare the end position of the generated hot-stabbing motions
against the demonstrations. We chose this metric as the
position of the hot-stabbing plug at the end of the motion
should reach the receptacle entrance –up to some allowed
variance– while the path to this state can vary reasonably.
Fig. 2 (right) shows the 30 hot-stabbing motions, 10 per
receptacle target, that were generated by sampling from the
learned model, beginning at randomized initial states.

Table I summarises the results of the evaluation trials.
The motions that are generated by the learned model ac-
curately position the plug according to the demonstrations.
The outcome is highly repeatable, as in practice all motions
to a particular receptacle converge to the same end-point at
the end of the motion regardless of the starting state. As
all reproduction RMSEs are bellow 1cm, we conclude that
all 30 trials are successful in hot-plugging to the different
receptacle targets.

IV. CONCLUSION
We presented an online and incrementally learned HSMM

representation for encoding manipulation tasks in semi-
autonomous underwater teleoperation scenarios. We demon-
strated how such representation can be learned from incre-
mental piece-wise demonstrations, without the need to store
demonstration data, and how motions can be regenerated
from the learned model. We evaluated the performance of
our approach with a common ROV task and showed how
a learned model can reproduce motions with high accuracy
and repeatability.
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