Optimization of dynamic motions for legged robots I. Havoutis, J. Buchli, D. G. Caldwell and C. Semini

ISTITUTO ITALIANO DI TECNOLOGIA

Motivation

- Dynamic motions are useful in real-world applications
- They can be difficult to analytically define or author especially when dealing with systems acting in the real world (noise, uncertainty, delays)
- Instead, define high-level goals
- Use an optimization/learning method to arrive to the desired controller

The Hydraulic Quadruped robot

- Designed and built in the Dynamic Legged Systems Lab^[1]
 - 12 hydraulically actuated joints

Dynamic Rearing Motion

Simulation results

Rigid body dynamics simulation using a CAD based robot model with kinematic and dynamic constraints, and a realistic

- 4 rotational actuators
- 8 linear actuators
- Rugged hardware, impact tolerant
- Fully torque controlled!
- Actively compliant no passive springs

Covariance Matrix Adaptation Evolution Strategy

- Algorithm for difficult non-linear non-convex black-box optimization problems in continuous domain^[2]
 - Generate & evaluate population
 - Update evolution path
 - Adapt covariance matrix
 - Adapt step size
 - ..repeat

Setting up the policy

Weighted average of Gaussian kernels over a time lattice

- Regularly spaced kernels (μ 's)
- Fixed kernel variance (σ^2)
- Varying weights (w)
 - m

 \bigcirc

Example from http://en.wikipedia.org/wiki/CMA-ES

*

contact model.

- Initial policy roll-out
 - Robot stands in place

- Policy optimization
 - Minimal parameter set
 - Standard deviation
 - Population size

- Robot wiggles back and forth
- then pushes-off with its front legs while pulling-in the hind legs (...see clip!)

Cost function

Final cost:

 $C(w) = c_f + \int_{t_s}^{t_f} c_r(t) dt$

- distance from upright pose
 - magnitude of *linear velocity*
 - magnitude of angular velocity

Running cost:• exceeding joint limits• magnitude of joint torques

Currently

- Optimization/learning on the real quadruped robot
 - Starting from the policy optimized in simulation
- More dynamic motion examples
 - Jumping in place and over an obstacle/gap
 - Optimizing sequences of dynamic motions

[1] C. Semini, N. G. Tsagarakis, E. Guglielmino, M. Focchi, F. Cannella, and D. G. Caldwell, "Design of HyQ - a hydraulically and electrically actuated quadruped robot," Journal of Systems and Control Engineering, 2011.
[2] N. Hansen, S. Kern, "Evaluating the CMA Evolution Strategy on Multimodal Test Functions", Lecture Notes in Computer Science, Springer Berlin Heidelberg, 2004.

Dynamic Legged Systems Lab Advanced Robotics Department Istituto Italiano di Tecnologia ioannis.havoutis@iit.it buchlij@ethz.ch darwin.caldwell@iit.it

claudio.semini@iit.it

Agile & Dexterous Robotics Lab Institute of Robotics and Intelligent Systems Eidgenössische Technische Hochschule Zürich

