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Abstract— Legged robots are expected to have superior
mobility on rough terrain than wheeled robots. The main
reason is that legged locomotion is more adaptable to a wide
range of terrain types as the robot can decompose its path
into a sequence of footholds and can use different locomotion
strategies. In order to accomplish most of the locomotion
tasks the robot requires high level control (i.e., to adjust
the locomotion parameters and to choose optimal footholds)
which depends on real-time localization and accurate terrain
mapping. In this paper, we propose a SLAM solution using
a pan and tilt stereo camera mounted on an hydraulically
actuated quadruped robot that builds a map and keeps track
of the robot’s position. Since the computation needs to be
carried out on board and the robot is subject to considerable
motion during its locomotion (regular vibrations, impacts or
slippages), we developed a dedicated implementation based on
fast stereo depth computation, GPU based map building and
mechanical motion compensation. Combined with a foothold
planning framework presented in our previous work [1], this
localization and mapping ability allows to perform locomotion
in a fully planned manner. Successful results of foothold
planning with our quadruped robot show the effectiveness of
our method.
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I. INTRODUCTION

Legged robots have the potential to navigate in more
challenging terrains than other robots do. Unfortunately their
control is more demanding because they have to deal with
the traditional mapping and path planning as well as some
more particular issues like balancing and foothold planning,
that are specific to legged locomotion. The perception system
is crucial to enable the robot to navigate, coping with terrain
irregularities and avoiding obstacles.

At the Istituto Italiano di Tecnologia, we designed the
fully torque-controlled Hydraulic Quadruped robot (HyQ) to
perform highly dynamic tasks in difficult terrains; we showed
crawling, walking, trotting and jumping capabilities. More
recently, we demonstrated some visually assisted trotting,
Inertial Measurement Unit (IMU) based balancing, step
reflex, and foothold planning on known terrain [1], [2].

In this paper, we present the integration of a dedicated
stereo vision-based Simultaneous Localization And Mapping
(SLAM) system and terrain modeling on HyQ that allows
foothold planning. To extend the robustness of these two
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modules during navigation, a mechanical motion compen-
sation based on IMU information has also been added. By
decoupling camera and body motion, we improved the accu-
racy of mapping and reduced SLAM failures. We preferred
a stereo camera instead of the RGBD camera because it
provides a wider field of view, a larger range, and more
flexibility for indoor/outdoor applications.

II. RELATED WORK

Significant progress has been achieved during the last few
years in the field of robot perception abilities. In the context
of quadruped robots, perception is required for different
subsequent tasks and methods such as state estimation, robot
SLAM, terrain modeling and classification or object recog-
nition. Only few teams demonstrated the implementation of
SLAM on a real system. In most cases they only handle parts
of the problem, like doing on board terrain mapping but with
the support of external localization or using accurate pre-
existing maps while localizing the robot on board. Vision is
rarely used on quadrupedal machines. Indeed, such platforms
are commonly used to develop low-level controllers, rather
than high-level cognitive processes. Furthermore legged lo-
comotion expects precise and failsafe perception capabilities,
regardless of difficulties like fast motion, impact shocks,
complex visibility that make its use more difficult. However,
up to now, few people have worked on the integration of
vision sensors on quadrupedal platforms.

Kolter et al. [3] presented the most autonomous approach
by removing the dependence on given maps and external
state input. In their control framework they use a stereo
camera with a simple ICP-based technique for point cloud
registration to incrementally build a map of the environment.
Then, they use a texture synthesis algorithm to fill occluded
areas in order to obtain a complete map for the subsequent
motion planning of their quadruped, LittleDog [4], [5]. While
the camera was on the robot, the vision processing and path
planning was performed on an external computer.

Chilian and Hirschmuller [6] implemented a multi sensor
fusion algorithm by merging inertial measurements, legged
odometry, and visual odometry for the DLR Crawler. A semi
global matching algorithm for stereo vision was implemented
in order to compute an elevation map where the traversability
of their hexapod robot could be estimated.

In a similar way, [7] fused the information from stereo
vision, legged odometry, and IMU in order to obtain accurate
state estimation of their quadruped robot BigDog [8]. On



Fig. 1. Pictures of our experimental setup. (a) The HyQ vision setup (b)
The stereo camera in the mapping position while the robot is trotting.

the above mentioned system they also developed obstacle
detection algorithms using stereo vision and LIDAR, a
registration pipeline and 2D cost map computation which
was used eventually for A* based path planning.

Bajracharya et al. [9] recently showed terrain mapping for
vision-in-the-loop walking on the LS3 robot from Boston
Dynamics. The vision system was used to map the environ-
ment in the vicinity of the robot and inform the gait gen-
eration process about possible changes in the surface where
the robot is locomoting. Their main contribution focused on
the robustness of the mapping in difficult terrain (vegetation,
slopes) and difficult light condition (day or night).

Filitchkin and Byl [10] used a monocular camera to
perform terrain classification. The classification was then
used to influence the locomotion behavior of their LittleDog
quadruped. Finally Shao et al. [11] presented an obstacle
avoidance approach for their quadruped robot that uses a
stereo vision-based terrain modeling algorithm.

III. THE HYQ ROBOT, AND ITS STEREO SET UP

A. The HyQ robot

HyQ [12] is a versatile hydraulically actuated machine
that weighs 80 kg, is 1m long and 1m tall (Fig. 1.a) and
has upper and lower leg segments of 0.35m in length. The
robot’s legs have three degrees of freedom each, two joints
in the sagittal plane (hip and knee flexion/extension) and
one joint for hip abduction/adduction. It is equipped with a
PC104 for actuation control at 1 kHz.

B. Choice of the vision setup

On HyQ, vision is mainly needed to build a 3D model of
the surroundings that is used to compute suitable footholds
that allow the robot to overcome obstacles. The main features
we have taken into account are:

• the camera height from the ground 1m
• the resolution greater than the robot foot size (3 cm)
• the minimum size of the desired 3D model 2m2

To obtain a map of the surroundings large enough at this
close distance, we had to choose wide angle lenses. Also,
we decided to mount the camera on a Pan and Tilt Unit
(PTU) to enable some active motion and fixed the camera

Fig. 2. Illustration of the depth capabilities and the depth resolution of our
bumblebee camera. (a) Relationship between depth and disparity (cf Eq. 1),
(b) Relationship between depth resolution and depth.

looking downwards with an approximate tilt angle of 55◦.
We also selected the stereo camera characteristics (baseline,
image sensor, resolution, frame rate), trying to find the best
compromise between accuracy and computation load.

The HyQ vision set up is a Bumblebee2 firewire colour
camera (Point Grey) mounted on a Pan and Tilt Unit (Flir
PTU-D46-17). It is shown in Fig. 1.b.

• The camera has a focal length of 2.5mm, a wide field
of view of 97◦, 2 CCD 1024 px × 768 px at 20FPS,
a sensor size of 4.80mm × 3.60mm, and a 12 cm
baseline. It is accurately pre-calibrated with an accuracy
of 0.11 pixel.

• The PTU has a pan range of ±159◦, a tilt range
of −47◦/+31◦, a maximum speed of 145 ◦/s, and a
maximum control rate of 60Hz.

The whole SLAM algorithm runs on a dedicated computer
equipped with a quad-core Intel processor at 2.50GHz and
an NVIDIA GPU GeForce GTX 640.

C. Validation of the camera characteristics

In this section we will present some stereo vision basics
to clarify our study of the camera characteristics. For more
details on getting depth from stereo vision, the reader can
refer [13]. Two images with slightly different viewpoints
show the same object in different positions; the distance
between the two is called disparity. Given a disparity value
D, the 3D coordinates of the matched pixels in the two
stereo images in m are computed using the projective camera
equations: Eq. 1
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where b is the baseline, f is the focal length, and D is the
disparity (in m), X,Y, Z are the coordinate of the object,
and u and v are the location in the depth image (see Fig. 3,
camera frame, image frame). All u, v, f and D are in pixels
in Eq. 1.

Given a change in the disparity, the smallest change in
depth that is detectable by the stereo geometry is the depth
resolution r:

r = D
Z2

b f
(2)

Fig. 2.a shows that the minimum depth for this stereo
camera is 0.65m: at this point, the disparity is over 100 px.



Fig. 3. Definition of HyQ reference frames: image frame, camera frame,
base frame and world frame.

The maximum depth is above 40m, but most of the change
in disparity takes place in the first few meters. In our case,
because we focus on building an accurate map in front of
the robot’s forward feet and we also want to reduce the
computational load as much as possible, we set the stereo
matching search window of disparities from 10 px to 74 px,
which corresponds to a depth restricted to the interval
0.8m to 4m.

Fig 2.b shows the depth resolution r plotted on a log10
scale. At 1m, the depth resolution is about 4mm (assuming a
system without video noise or matching errors). At 2m, it has
grown to 15mm and at 3m is 35mm. This resolution justifies
our decision of building a height map with minimum 5mm2

cells. It has to be noted that depth resolution is not the same
as depth accuracy, which measures the difference between
the depth computed and the actual depth. Depth accuracy is
sensitive to errors in camera calibration, which is certified to
be good on this fixed pre-calibrated stereo camera. Finally,
the small focal length gives us a large field of view (about
97◦ and allows to cover 2m2 surface at 1m of distance that
ensures a good view on obstacles in front of the robot for
foothold planning.

IV. ON BOARD SLAM WITH A STEREO CAMERA

SLAM is the process of incrementally building up a
map within an unknown environment (without a priori
knowledge), while at the same time keeping track of the
current location of the robot. To implement this process
we used a stereo camera and a code based on the Kinect
Fusion algorithm for large scales [14]. The developed SLAM
system, the terrain modeling and the path planning modules
are described in Fig. 6.

A. Depth map computation

1) Disparity computation: The rectified images are ex-
tracted with the Point Grey proprietary library Triclops and
the computation of the disparity for each pixel is performed
using the Sum of Absolute Differences (SAD) method [15]
on 4 threads. We used the SAD correlation based method
because of its small computational load, that is suitable
for real-time implementations. The disparity is computed on
edges images, to allow matching on the changes in brightness

Fig. 4. Depth map computation flowchart.

rather than on the absolute pixel intensities. This approach is
more robust in environment with variables light conditions,
like outdoor settings, where our robot is intended to operate.
In order to obtain a more accurate disparity we use a sub-
pixel interpolation filter [16] on the disparity map. The
filter attenuates the quantization effect and makes surfaces
smoother (the disparities are interpolated up to 1/4 sub-pixel
of accuracy).

2) Filtering: The SAD correlation method computes the
similarity between pixels by comparing windows around
pixels of interests. This method is fast but yields to several
artefacts: in some regions disparities are uncertain and are
left as gaps in the disparity map; this is mainly due to insuffi-
cient texturization of the surfaces or noise. To overcome this,
we used different fast filtering methods to remove outliers
and fill in holes. It has to be noted that only these filters are
applied, no uniqueness, surface or texture check are applied.
The filter we apply is the following:

for every pixel i in disp_t[]
if disp_t[i] = 0xFF00 (outlier)
then

if disp_t-1[i] != 0xFF00
then disp_t[i] = disp_t-1[i]
else disp_t[i] = median of the

3x3 neighborhood of pixel i
end

end
end

It uses the spatial and temporal information to fill in the
disparity. Every pixel without disparity values is checked and
small holes are filled. Then, outliers are removed by applying
a speckle filter (see [17]). It removes spikes characteristic of
mismatches in correlation.

As a reference, we compute on our dedicated computer
the 640 px × 480 px disparity at 15Hz and then we extract
the depth. The depth map is the pixel image that holds depth
values, i.e., distances from the camera to the 3D scene points.

B. Simultaneous Localization and Mapping

For the SLAM, we use a modified version of the Kinect
Fusion (KinFu) Large Scale algorithm from PCL [14].
KinFu Large Scale is an extension of KinFu for building
up larger maps. It performs high-quality reconstruction of
geometrically accurate 3D models in real-time. KinFu was
natively built for Kinect, it directly works with the depth map
and performs surface reconstruction, which approximates
more accurately the geometry of real world than point-based
representations. It is also optimized for GPUs, which allows



Fig. 5. Different steps of the height map building framework. (a) right
image, (b) left image, (c) post processed disparity, (d) depth image, (e)
height map built from one single point cloud, (f) terrain model and the
robot in the simulation environment.

all the computation to be done in real time with a sufficient
accuracy.

As the stereo vision module provides a depth map, we
used it to feed the KinFu algorithm. The following sections
describe the algorithm in more details.

1) Depth Map conversion: A depth map is converted into
a 3D point cloud by using the calibration matrix (see Eq.
1). The result of this step is a point cloud with vertex and
normal data for each point at three different levels of detail.

2) Pose Estimation: A modified ICP algorithm performs
the alignment of two surfaces making the assumption that
they are sufficiently close to each other. The ICP iterations
are performed with three different resolutions and generate
a six degrees of freedom transformation matrix that aligns
the current point cloud with the previous ones.

3) Surface reconstruction and meshing: Ray casting is
used for this surface reconstruction step. A prediction of
the current global surface is obtained, with vertex data and
estimated normal data. The refined ray-casted model is the
same used in the next ICP step for alignment. By doing this,
instead of using just the last frame point cloud as the source
for alignment, a less noisy model is obtained.

C. Pan and tilt motion compensation

As this robot is subject to considerable motion during
locomotion and since the ICP assumes that point clouds are
close together, we added a motorized motion compensation
system with a Pan and Tilt Unit based on the IMU infor-
mation provided on the robot. This approach prevents that
this assumption is broken, improves the SLAM results and
reduces failures. To control our PTU motors we choose to
implement a PD controller, that has been used to control

Fig. 6. Flowchart of the whole software developed.

most active head systems. For each axes, pan and tilt, we
close the feedback loop in position. More details on the
motion compensation controller and on the improvement of
the SLAM can be found in [18].

V. FROM THE MAP TO THE ROBOT PATH PLANNING

Since we transformed all the point clouds into the same
reference frame (i.e., camera frame in Fig. 3). The goal is to
build a full map of the terrain for foothold planning. Conse-
quently the merged point cloud needs to be transformed in
the robot frame, and the pose estimation needs to be used to
position the robot in the map.

A. Calibration

To transform the map into the robot frame we need the
full transformation between the camera frame and the robot
frame. As the robot setup often changes — due to repairs,
installation of new parts and sensors, or simply because of a
change of application — we developed a module to compute
automatically this transformation with high accuracy.



Fig. 7. The robots at different time stamp localized in its map while
trotting. The robot has roughly moved 10 cm forward between each image.

The method consists in tracking a marker on the right front
foot (see Fig. 1). As we know the position of the marker
in the robot frame (thanks to the leg encoders and forward
kinematics) and their positions in the camera frame (thanks
to the visual tracking), we can estimate the transformation
between the two.

1) Tracking of markers: For the tracking we use the color
information with the Mean Shift algorithm. The method
is easy-to-use, since there is no need of learning stage or
parametrization. We implemented a modified version of the
CAMShift algorithm [19]. This method sends at 20Hz the
position of the tracked marker inside the two stereo images.

For each tracker position computed in the camera frame,
we associate the position of the tracker in the robot frame.
A sample used for the calibration is defined as: urvrulvlxyz
where ur and ul are the row position (in pixels) of the
barycenter of the marker in the right and left image respec-
tively, and vr and vl are the column position (in pixels). Then
x, y, z is the 3D position (in meters) of the marker in the
robot frame (Fig. 3).

Note that the calibrated transformation of the camera is
also expressed in robot coordinates.

2) Calculation of calibration matrices: For the camera
calibration, we developed a flexible method that allows us to
calibrate any kind of camera. We calibrate the position and
rotation of the camera, as well as the intrinsic parameters.
We chose a pinhole camera with Brown’s distortion model
[20]. The parameters that define our camera are:

• position and rotation: x, y, z, roll, pitch, yaw
• focal length and skew factor: fx, fy , s
• principal point and lens center: x0, y0, lx, ly
• 10 distortion parameters
Given a 3D point in space and using the above mentioned

camera model, we can calculate the position of this point
in the camera frame. Since we are tracking the point we
know what is its actual position of this point in the image.
The calibration error is defined as the sum of the squared
distance of the predicted and measured marker position in
the camera frame. By using a multi-variate Newton Raphson
method we can iteratively minimize the error and find the
camera position, rotation and internal parameters. We carried

out several calibrations and we got an average error below
one pixel in less than 1000 iterations.

B. Transformation to world frame and height map

The merged point cloud is obtained in the initial camera
frame. It is necessary to transform it to camera final position
and next to the robot frame in order to be able to perform
foothold planning. Eq. 3 represent this transformation.

Xf = P−1 C Xi (3)

where P is the pose that is to say the final camera position
in the initial camera frame and C the matrix representing the
camera initial position in the robot frame.

Since we have of the map in the robot frame, the point
cloud is projected in 2D where all the pixels of the image cor-
responds to a (5mm2/px) surface, and finally some filtering
is performed to remove the outliers, fill holes and improve
the height map quality. Again we use the filter presented in
Section IV-A.2 followed by an edge preserving smoothing
(anisotropic filtering). Fig. 7 shows the robot in its maps in
our simulation environment.

We chose to use a height map as a world model shared
between the SLAM and planning modules because of it is
efficient in terms of computation, analysis and storage space,
and accuracy to perform foothold planning.

C. Terrain cost map for foothold planning

Height maps provide morphology information as 2D
images whose pixel represents the vertical distance of a
finite squared cell from the ground level. A straightforward
approach to use such type of information is to create a
map that associates a cost to each cell extracted from the
height map and then compute the most suitable sequence of
footholds that leads to the goal. The cost map penalize:

• High frequencies (i.e., discontinuities on the morphol-
ogy, such as the edges of a rock);

• Small uniform areas (e.g., holes or small flat rocks),
since the robot has a non negligible foot area and it
could miss such foothold;

• The distance to the robot nominal leg position (56 cm).
The maximum extension and the the minimum retrac-
tion are respectively 10 cm and 20 cm.

To achieve these goals, we extract information from
derivatives of the image and then we assign a cost that
depends both on the direction and the intensity of those
derivatives. The cost map computation involves three steps:

• Edge detection: the edges of a height map reflects the
actual discontinuities of the ground;

• Morphology operator: since the foot has a finite area,
we want to avoid also areas around edges;

• Gaussian filter: the cost decreases proportionally with
the distance from the computed edges.

The final cost map is then linearly combined to the original
height map to take into account the height of the cells
(Fig. 8.b). In this figure, the values of the colormap vary
between dark cold colors for lower costs and dark warm



Fig. 8. Conversion of the height map (a) to a cost map (b).

Fig. 9. Foothold planning results using an height map. (a) height map (b)
cost map (c)(d) simulation environment without and with the footholds.

colors for higher costs. In particular, we compute the absolute
difference between the robot ground level and the height map
(for example the stepping stones in Fig. 9.b are darker than
the ground because they are at the same level of the robot).
Unknown heights where treated as special case by assigning
them with the maximum cost.

VI. EXPERIMENTS ON FOOTHOLD PLANNING

To experimentally validate our map building pipeline we
use our foothold planner presented in [1]. This path plan-
ning framework compute from a cost map the appropriate
footholds to overcome challenging terrain like stairs or
stepping stones. It is based on virtual model based controller
that guarantees the overall compliant behavior of the system.
It has been demonstrated using maps a priori built with a
Kinect and the robot execute blindly its planned trajectory.
We refer the reader to [1] for more details about the foothold
computation and the controller.

In this paper, we used the same algorithm but a map built
online, directly. It has to noted that dynamic re-planning is
not performed. The sequence of foothold is computed by the
robot just before starting moving (Fig 9.c). Next when the
foothold sequence has been accomplished, we can update
our position and compute new footholds. The results show
the effectiveness of our map building pipeline in order to
compute footholds.

VII. CONCLUSIONS

In this paper we propose a real-time SLAM solution using
a pan and tilt stereo camera mounted on an hydraulically
actuated quadruped robot that builds a map and keeps track
of the robot’s position. We validated the choice of the stereo
vision set up, we detailed our stereo vision framework and

presented some results of path planning using the previously
built map. Experiments of locomotion on our hydraulically
actuated quadruped robot were successful with all the com-
putation on board thanks to dedicated implementation based
on fast stereo depth computation, GPU based map building
and mechanical motion compensation. This localization and
mapping ability allows to perform navigation on rough
terrain in a fully planned manner.

Our future work will be to integrate the online dynamic
re-planning to compensate the drift in case of slippage,
improve the accuracy of the map and reduce SLAM failures
by integrating the IMU measurement in the SLAM pipeline.
Finally we would like to improve the disparity computation
rate by adding FPGA computation, to relieve the vision
computer, that today is fully used for stereo computation.
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