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Abstract—Research into legged robotics is primarily motivated
by the prospects of building machines that are able to navigate
in challenging and complex environments that are predominantly
non-flat. In this context, control of contact forces is fundamental
to ensure stable contacts and stability of the robot. In this
extended abstract we propose a planning/control framework
for quasi-static walking for quadrupedal robots, implemented
for a demanding application in which regulation of ground
reaction forces is crucial for the success of the walking behaviour.
Experimental results demonstrate that our 75-kg quadruped
robot is able to walk inside two high-slope (50◦) V-shaped walls;
an achievement that to the authors’ best knowledge has never
been presented before. The robot is able to distribute its weight
among the stance legs while ensuring no foot slippage and fulfill
the unilateral constraints of the contact forces. The approach
makes use of a simplified model of the robot. Experimental
evidence shows that even a lower dimensional model with the
assumption of quasi-staticity is sufficient to perform the required
task.

I. INTRODUCTION

Current research on legged robots is motivated by their
potential impact in real-world scenarios such as disaster re-
covery scenes. Such environments require systems capable
of robustly negotiating uneven and sloped terrains. Despite
remarkable advances in the theoretical tools [8, 7], to this
date, experimental results have been limited to a few platforms
and tasks, still not matching the complexity of the real world.
Righetti et al. [11] experimented with walking up a slope of
26◦ with the Little Dog quadruped robot. On the quadruped
robot StarlETH [3] Hutter et al. [5] used a contact-force
optimization method to achieve static walking on a surface
with approximately 40◦ inclination. Regarding contact force
control in humanoid robots, so far research has mainly focused
on balancing experiments on flat ground [6, 10, 13]. This
substantial gap between simulation and reality is often due
to the lack of high-fidelity joint torque control [5, 2, 1]. The
contribution of this work is to combine different ideas from
planning to control, and apply them to a challenging test
case. Figure 1 presents the building blocks of our control
framework. The whole body controller block is inspired by
the work presented in [10, 3]. Its goal is to distribute the
robot weight over the supporting contact points in an optimal
manner. The approach is rather general as it can deal with
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Fig. 1: Block diagram of our whole-body control framework.
The motion generation block (yellow) computes the trajec-
tories for CoM and joints to be input to the whole body
controller (green) computes the reference torques for the low-
level controller (grey).

any number of contacts as long as normal directions and
friction coefficients are known or estimated. The method
does not require contact force measurements and avoids joint
torque discontinuities. The motion generation block computes
desired trajectories for the center of mass (CoM), the base
orientation and the swing foot to achieve a static walking
pattern. Furthermore the robot is able to adapt to uneven
surfaces, achieving a stable foothold and ensuring physical
feasibility (e.g. not to violate the constraints of the stance feet).
For the sake of brevity in this extended abstract we will present
only the whole body controller.

II. WHOLE BODY CONTROLLER WITH OPTIMIZATION OF
GROUND REACTION FORCES

A. Centroidal robot dynamics

Following the results presented in [9], the centroidal robot
dynamics can be described as:

l̇ = m(ẍcom +g) = Fcom (1)

ḣ = IGω̇G + İGωG = Γcom (2)

where l̇ and ḣ are the rate of change of linear and angular
momentum respectively, g ∈ R3 is the gravity acceleration
vector, m ∈ R is the total robot mass, IG ∈ R3×3 is the
centroidal rotational inertia, ẍcom ∈ R3 is the acceleration of
CoM, ω̇G ∈ R3 is the rotational acceleration of an equivalent
rigid body with the inertia IG, and finally Fcom ∈ R3 and



Γcom ∈R3 are the net external force and moment at the CoM,
respectively. The design of the controller is based on the
following assumptions.

1) we assume that İGωG ' 0: this is reasonable because in
our experiments the robot moves slowly.

2) since most of the robot’s mass is located in its base (i.e.
47 out of 75 kg), we approximate the CoM xcom and the
average angular velocity ωG of the whole robot with the
CoM of the base xcom−base

1 and the angular velocity of
the base ωb

3) since our platform has nearly point-like feet, we assume
that it cannot generate moments at the contacts.

4) we assume that the ground reaction forces (GRFs) are
the only external forces acting on the system.

Under these assumptions, expressing the net force and moment
at the CoM as functions of the c GRFs (i.e. f1, . . . , fc ∈ R3,
where c is the number of stance feet), we can rewrite (1) and
(2) as:

m(ẍcom +g) =
c

∑
i=1

fi (3)

IGω̇b '
c

∑
i=1

( fi× pcom,i), (4)

where pcom,i ∈ R3 is a vector going from the CoM to the
position of the ith foot defined in an inertial world frame.
These two equations describe how the GRFs affect the CoM
acceleration and the angular acceleration of the robot’s base.

B. Control of CoM and base orientation

We compute the desired acceleration of the CoM ẍd
com ∈R3

and the desired angular acceleration of the robot’s base ω̇d
b ∈

R3 using a PD control law:

ẍd
com = Kpcom(xd

com− xcom)+Kdcom(ẋd
com− ẋcom) (5)

ω̇
d
b = Kpbasee(Rd

bR>b )+Kdbase(ω
d
b −ωb) (6)

where xd
com ∈ R3 is the desired position of the CoM, and

Rb ∈ R3×3 and Rd
b ∈ R3×3 are coordinate rotation matrices

representing the actual and desired orientation of the base w.r.t.
the world reference frame, respectively, e(.) : R3×3 → R3 is
a mapping from a rotation matrix to the associated rotation
vector, ωb ∈ R3 is the angular velocity of the base.

C. Computation of desired GRFs

Given a desired value of the linear acceleration of the CoM
and the angular acceleration of the robot’s base, by rewriting
(3) and (4) in matrix form we compute the desired GRFs
by solving the following optimization problem, which is a
quadratic program:

f d =argmin
f∈Rk

(A f −b)>S(A f −b)+α f>W f

s. t. d <C f < d̄,
(7)

1In the following we keep using xcom even if in the implementation we
actually used xcom−base.

Fig. 2: HyQ walking inside a 50◦-inclined groove. Desired
wrench (force, moments) at the CoM is depicted in white.
Ground reaction forces are in black, friction cone is light red.

where we exploit the redundancy of the solution to ensure the
respect of the inequality constraints imposed by the friction
cones and the unilaterality of the GRFs. W ∈Rk×k is a weight
matrix to keep the solution bounded and might be exploited
also to optimize for torques while C ∈ Rp×k is the inequality
constraint matrix. We approximate friction cones with square
pyramids to express them with linear constraints. We compute
the desired joint torques by mapping the desired GRFs f d into
joint space using the quasi-static assumption (τ =−SJ>c f d).

III. EXPERIMENTS

Extensive experiments have been carried out making the
robot walk inside a 2.5m long V-shaped “horizontal groove”
which is a good template to test the capability of our frame-
work in controlling the ground reaction forces. The experimen-
tal platform used in this work is the HyQ quadruped robot
[12] (Fig. 2). The robot weights 75 kg, has 1m× 0.5× 1m
(L×W ×H) dimensions and is equipped with 12 actuated
DoFs, i.e. 3 DoFs for each leg. All the joints of the robot are
torque controlled with a high-performance low-level controller
[1] which receives high level torque reference from the whole
body controller. The base orientation control aims to maintain
the robot’s trunk horizontal during the walk. The control loop
for the low-level torque controller ran at 800 Hz, whereas
the whole-body controller ran at 133 Hz. We solved the
optimization problem (7) in real-time using the open source
software OOQP [4].

Fig. 3 plots the tracking of the contact forces of the left front
foot. A feedback ratio on average < 18%, demonstrates that
our approach captures well the predominant robot dynamic
behavior. Figure 4 shows the distribution of GRFs on all the
legs for the same groove experiments. The GRFs are always
inside the friction pyramid boundaries.

Note that the unilateral constraints on the contact forces
implicitly restrict the CoP inside the convex hull of the support
polygon.

IV. CONCLUSIONS AND FUTURE WORK

We presented a control framework for quadrupedal quasi-
static walking on high-sloped terrain, reporting experimental
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Fig. 3: Cartesian components of the contact forces in the left
front leg. Red plots are the desired forces generated by the
optimizer while blue plots are the actual contact forces.
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Fig. 4: Distribution of the contact forces at the four feet. The
plots show the forces along the ground normal direction as a
function of the norm of the tangential forces. The red lines
represent the boundaries of a conservative friction cone set
in the controller, which correspond to a friction coefficient
µ = 0.5, while the green lines represent the estimated one.

results on a torque-controlled quadrupedal robot. By direct
control of the GRFs we were able to avoid slippage despite
the high terrain inclination (i.e. 50◦). We believe that this
capability is essential for the deployment of robots in adverse
environments, such as mountains or disaster-recovery scenar-
ios. Despite the simplifying assumptions the use of a lower
dimensional model was sufficient to perform the task. The
presented experiments show that the recent trend of force-
based control frameworks can be used to perform locomotion
on high-slope terrain.
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