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1 Motivation

Legged robots and animals can exhibit a variety of locomo-
tory skills, trotting and walking being the most widely used
modes of locomotion. Such behaviours are often defined
with the overall stability of the system in mind and are inher-
ently of periodic nature. Legged robots, possibly equipped
with arms as well, in everyday scenarios, e.g. service or
forestry/agriculture, will require also skills that are not of pe-
riodic nature but rather better described as single-shot ma-
noeuvres.

Such motions can be dynamic in nature and require the coor-
dination of the whole body of the robot in order to accomplish
their goals. Examples in a quadrupedal locomotion context
can include rearing and balancing on two legs or propping the
free legs against a wall to maximize reach, jumping over an
obstacle or gap and squat-jumping in place. All such motions
can be part of a larger locomotion-vocabulary but are not pe-
riodic in nature.

Everyday tasks in complex environments require successful
agents to perform such whole body dynamic manoeuvres.
The specification of such motions using a traditional motion-
design approach is often cumbersome if possible at all. In
addition motion authoring often fails to take into account the
dynamic properties and the capabilities of the robot in ques-
tion. Instead we are investigating ways of leveraging benefits
from learning and optimization approaches that can be used
to optimize whole body manoeuvres, for robots with legs and
arms, through a somewhat high-level task specification – of-
ten an evaluation (cost) function over the overall outcome of
the behaviour.

2 State of the art

Learning and optimization have a long tradition with au-
tonomous agents but until recently were mostly restricted to
problems amendable to discrete representation and/or low-
dimensionality. Theodorou et. al [1] developed a frame-
work, Policy Improvement with Path Integrals (PI2), based
on stochastic optimal control principles that is able to cope
with high-dimensional problems, common in multi-degree-
of-freedom robotics scenarios. Stulp et. al [2] demonstrated
how the PI2 approach can be used for optimizing trajecto-
ries and gain schedules for humanoids in an every-day task

Figure 1: The robot performing a dynamic rearing motion in sim-
ulation. Left: the initial pose of the rearing behaviour.
Right: the final pose after performing a dynamic rearing
motion optimized with CMA [5].

context. Coming close to our research focus on quadrupedal
robots, Yeuhi et. al [3] used a general stochastic optimiza-
tion approach, namely covariance matrix adaptation (CMA)
[5], to synthesize dynamic manipulation motions, that require
whole-body manoeuvres, to optimize the performance of the
system. Fankhauser et. al [4] used a combination of simu-
lation and hardware-based optimization with PI2 to optimize
the behaviour of a single-leg hopper over a number of sce-
narios and metrics, e.g. hopping height, hopping length, and
periodic hopping.

3 Our approach

We follow a similar direction using the CMA algorithm [5] to
optimize/learn a dynamic rearing motion on the quadrupedal
robot - HyQ (Fig 1). Rearing is a motion common to
quadrupedal animals, during which the front legs push the
torso in an upright orientation and the support of the body
is passed to the hind legs. This can serve to prop the front feet
onto another surface or balance in a bipedal posture. Note that
often such posture cannot be reached in a kinematic (static)
manner.

Formally the rearing problem in the context of robotic mo-
tions is to find the appropriate joint motions that realize a
rearing manoeuvre. Direct optimization of time parametrized
torque profiles results in a search space that is inconveniently
large. To reduce the problem dimensionality we exploit the
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Figure 2: An example policy encoding with Gaussian kernels. The
µ’s are regularly spaced over time, the σ2’s are set to
0.01, and weights are randomized in the interval [-1,1].

task structure and impose that the front and hind legs form
pairs that act symmetrically. In addition, we use a time-
parametrized policy to encode torque profiles, represented as
a weighted average of Gaussian kernels. This has the form;

f (t) =
m

∑
i=1

wiφi(t)/
m

∑
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φ(t), φi(t) = exp
(
− 1

2σ2
i
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)
,

where the ws are weights associated with each kernel and φs
are Gaussian kernels described by their means, µ’s, and vari-
ances, σ2’s. An example policy is depicted in Fig 2 where
the µ’s are equally spaced, the σ2’s are all equally set to
0.01, and the weights are randomly sampled from the inter-
val w ∈ [−1,1]. In the case of rearing with the quadruped we
use 12 such representations, one for each degree of freedom
(DoF) of the robot.

4 Current result

We obtained preliminary results from a realistic simulation
of the rigid body dynamics model of the HyQ with con-
tacts. Learning in this setting consists of optimizing the set
of 12 time parametrized encodings, one per DoF, as described
earlier. The policy is initialized to values that keeps the
quadruped standing still on all four legs (Fig. 1, left). All
policies are encoded with a fixed set of 16 Gaussian kernels
evenly spaced in the time interval between 0 to 3 seconds,
while their variance is fixed to 0.01. The CMA algorithm is
then used to optimize the weights of all policies according to
a cost function. The cost function consists of a running cost
that seeks to minimize the torques used for producing the mo-
tion, and a final cost that evaluates the success of the motion
according to the task goals. The cost per trial has the form:

C(w) = c f +

t f∫
ts

cr(t)dt,

where t ∈ [0,3]sec, b is the vector of weights for the policy in
question. The integral part penalizes the magnitude of joint
torques, while the final cost term, c f , penalizes the distance
from an upright pose and the linear and angular velocities of
the robot’s trunk in the final pose of each trial (rollout).

In our experimental trials this far the policy converges after
evaluating approximately 3000 trials. For the rearing task and
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Figure 3: The absolute position (left) and orientation (right) of
the robot’s trunk during a rearing motion optimized with
CMA.

a time horizon of 3 seconds, CMA has converged to a pol-
icy that moves the robot forward and backward two times to
build momentum and then pushes of with the front legs while
crouching with the hind legs, subsequently followed by an ex-
tension of the hind legs. Fig 3 shows the position and the ori-
entation of the robot’s trunk as a rearing trial with the learnt
policy is performed. Overall the simulation results suggest
that the behaviour can be transferred to the real hardware, i.e.
considering required torques and current torque capabilities.
This preliminary study is up to now limited to simulation but
we aim to transfer and optimize the manoeuvre on the real
hardware in the near future.

5 Best possible outcome

The rearing motion serves just as an example of the possibili-
ties that learning/optimization approaches can offer to motion
synthesis. For example, the goal of a rearing motion can be to
reach the basin of attraction of a balancing controller, keeping
the quadruped upright. Control is then switched to the bal-
ancing controller, the details of which are beyond the scope
of this abstract. In the long term we would like to develop a
general tool to synthesise and optimize dynamic whole-body
motions that are not necessary of periodic nature. Such dy-
namic manoeuvres will serve to compliment and extend the
capabilities of robots with arms and legs.
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