
A comparison of Search-based Planners for a Legged Robot

Muhammad Asif Arain1, Ioannis Havoutis2, Claudio Semini2, Jonas Buchli3 and Darwin G. Caldwell2

Abstract— Path planning for multi-DoF legged robots is a
challenging task due to the high dimensionality and complexity
of the planning space. We present our first attempt to build
a path planning framework for the hydraulic quadruped -
HyQ. Our approach adopts a similar strategy to [1], where
planning is divided into a task-space and a joint-space part.
The task-space planner finds a path for the center of gravity
(COG) of the robot, while then the footstep planner generates the
appropriate footholds under reachability and stability criteria.
Next the joint-space planner translates the task-space COG
trajectories into robot joint angles. We present a comparison
of a set of search-based planning algorithms; Dijkstra, A? and
ARA?, and evaluate these over a set of given terrains and a
number of varying start and end points. All test runs support
that our approach is a simple yet robust solution. We report
comparisons in path length, computation time, and path cost,
between the aforementioned planning algorithms.
Keywords: Quadruped Locomotion, Path Planning, Search Al-
gorithms.

I. INTRODUCTION
Traditionally, robot locomotion has been divided into two

main categories of systems: wheeled and legged. Relatively
smooth and continuous surfaces are easily addressed by
wheel robots. Legged locomotion on the other hand, is
required when the robot needs to traverse a variety of
environments, including very rough, unstructured and dis-
continuous surfaces.

Path-planning is a crucial part of the navigation process.
It involves searching and finding a path from a start to a
goal position in the environment of navigation. The high
dimensionality of the state-space of quadruped robots makes
path planning a complex task. Related literature consists of
a number of different approaches for path planning with
quadruped robots. Most of them are combinations of off-
line and on-line phases, and a common theme is a moving
horizon solution. Kalakrishnan et al. [1] presented a planning
procedure that computes a COG path off-line and appropriate
footholds on-line. In this paper we adopt a similar solution,
that uses off-line planning and generates a locally optimal
plan given the initial state of the robot and the environment.
Furthermore, this paper presents a comparison between a set
of search-based planning algorithms for a legged quadruped;
the HyQ robot.

1M. A. Arain is with Mobile Robotics & Olfaction Lab, AASS Research
Center, Örebro University, 70182 Örebro, Sweden
<asif.arain@oru.se>

2I. Havoutis, C. Semini, and D. G. Caldwell are with Department of
Advanced Robotics, Istituto Italiano di Tecnologia (IIT), 16163 Genova,
Italy
<ioannis.havoutis>, <claudio.semini>,
<darwin.caldwell>@iit.it

3J. Buchli is with Agile & Dexterous Robotics Lab, ETH, 8092 Zurich,
Switzerland <buchlij@ethz.ch>

Fig. 1. An overview of the HyQ path planning framework. Details are
given in the text.

Our platform, HyQ [Fig. 2], is a 12-DoF fully torque-
controlled hydraulically and electrically actuated quadruped
robot comparable in size to a goat and roughly 70kg, e.g. an
Alpine Ibex. HyQ is capable of highly dynamic locomotion,
it is 1m long and 0.5m wide and stands 1m high with the
legs fully stretched [2].

Our previous work focused on dynamic locomotion,
mainly trotting, using active compliance and low-level feed-
back for stabilization [3], [4]. In this paper we report our
first steps towards a statically walking controller, capable
to negotiate very rough terrain with possibly intermittent
support areas.

II. RELATED WORK

Kalakrishnan et al. [1] developed a planner for the Lit-
tleDog robot. They used a template learning algorithm to
learn footholds for the robot with a reward function. This

RoMoCo '13 Proceedings of the 9th International Workshop on Robot
Motion and Control, Wasowo Palace, Wasowo, Poland,

July 3-5, 2013

104



map was used to find an off-line, approximate, body path
and generate footholds on-line, in a moving horizon manner.
They optimized the robot pose to find a solution with
maximum kinematic reachability. Kotler et al. [5] generated
a high level planning solution by extracting the features from
the map and finding a body path and footholds, along side a
low level planning solution for robot trajectories. Zucker et
al. [6] tuned a heuristic function based on a Dubins car model
for overall path planning, and optimized the generated trajec-
tories using CHOMP: a local swing trajectory optimization
procedure. Hart et al. [7] presented the heuristic-based search
for minimum path cost. Likhachev et al. [8] presented ARA?;
an extended version of the A? search algorithm, that can be
used in a number of applications including path planning.

III. THE PLANNER

Dealing with the full planning problem is too complex.
This way we divide path planning into two parts; task space
or high level planning and joint space or low level planning.
Dividing overall task into parts helps to simplify the problem
and ensures a computationally low yet optimized solution.
The idea is to develop an iterative process which runs until a
solution is found or report false if no solution exists. Dividing
the full path planning task into state-space and joint-space
subparts is a common approach. For example Kalakrishnan
et al. [1], Kotler et al. [5] and Zucker et al. [6], all developed
similar path planning procedures for the LittleDog quadruped
robot.

An overview of the planner architecture that we developed
is presented in Figure 1. The information or data a process
requires other than outcomes from previous modules, are
listed on the right. The output of each process module ap-
pears below each module. Graphs on the left of each process
module give a visual example of the results. Processes filled
with gray color at the top and bottom of the architecture do
not fall into the scope of our planner. The planner is divided
into task space planning (in three steps, in green) and joint
space planning (in orange). The task space-planner consists
of the map interpretation step, the COG path planning step
and the footstep planning step, while the joint-space planner
performs the COG trajectory planning step. The complete
planning pipeline is detailed in Algorithm 1.

Given an environment map, a cost function, a start and a
goal position and the robot model, Algorithm 1 will generate
a path for the robot, both in the task space and the joint space.
First the Terrain procedure interprets the map into a mean-
ingful form for the planner, then the COGPathP lanner
procedure produces a COG path for the robot, next, the
FootstepP lanner procedure generates optimal footholds
with respect to the previously generated COG path, and
finally, the COGTrajectoryP lanner procedure generates
the joint angle trajectories that the robot needs to follow to
realize the planned path.

A. Map Interpretation

The Terrain procedure translates a map into a meaningful
form for the planner. It performs a cost transformation to

Fig. 2. The hydraulically actuated quadruped robot - HyQ. It has 12 degrees
of freedom and its size is comparable to a goat. HyQ is designed for highly
dynamic behavior, e.g. trotting and jumping

each node in the map with respect to robot kinematic model,
identifies ‘no-go’ unsafe regions for the robot, and produces
a low resolution map for COG path planner.

The cost assigned to each node in the map is given a
priori and is based on the foothold placement conditions
according to the node in consideration. For the planner to
search for an optimal path of the robot COG, the cost
needs to be transformed in accordance to the robot geometry.
The updated cost value for the node under the robot COG
projection is the mean of the cost assigned to all nodes in the
workspace of each leg of the robot. Searching a COGPath
with updated cost values will help to find better footholds in
the footstep planning phase. Figure 3 presents a comparison
between these two cost scenarios. The cost procedure in
Algorithm 1 translates the cost associated with each node
in accordance with the robot model.

If there exists a low cost path near the boundary of the map
then the footholds generated for such path may go out of the
map area. To avoid such situations, boundary regions equal
to the half of the robot length are termed as ‘no-go areas’
[Figure 4]. The NoGoArea procedure in the Algorithm 1
makes this region not available for the COG path search.

The resolution of the map for a 3× 1.5 m2 area is 366×
128 cells. Considering robot dimensions and the map size,
it doesn’t really require such high resolution for COG path
planning. The Resolution procedure rebuilds the map and

(a) (b)

Fig. 3. Comparison of generated footholds with cost transformation.
COG path is in gray line and footholds are in red, green, blue and yellow
dots on Rock rough terrain. (a) without cost transformation, (b) with cost
transformation.

RoMoCo '13 Proceedings of the 9th International Workshop on Robot

105



(a) (b)

Fig. 4. Map interpretation (a) identified “No-Go” area with red color tape
for the robot, (b) low resolution map.

halves the original map resolution.

B. COG Path Planner

The COG path planner generates a low cost path in
task-space. The COG path is an approximate path that
helps to find overall better footholds. The search algorithms
we evaluated within our framework are Dijkstra, A? and
Anytime Repairing A? (ARA?). Below we briefly present
an overview of these search algorithms.

Dijkstra: Dijkstra can be viewed as the search algorithm
ground truth as it finds the lowest cost path by definition. We
used this algorithm as a reference for the rest. It is a uniform-
cost search and always produces the lowest cost path, if one
exists. For all the nodes in the map, it assigns a lowest cost
from the start node to each node in the map. It uniformly
explores the search space, therefore, computationally it is
very costly.

A?: A? combines a heuristic value with a cost value
for each node in the map and therefore, results into a
procedure that explores fewer nodes to reach a given final
node. Expediting the search with a heuristic function results
into less computations compared to searching with uniform-
search. When the heuristic is consistent and admissible then
A? always produces the lowest cost path [7].

The Heuristic Function: The addition of a heuristic func-
tion makes A? search faster than uniform-cost search. The
heuristic function evaluates a cost-to-go; an estimated cost
from any node in the graph to the goal node. A true heuristic
(perfect lowest cost) is hard to estimate before reaching the
goal. If the heuristic value is the same as the true cost
then A? will only expand the best path nodes. A heuristic
function is said to be admissible if it never overestimates
the cost of reaching the goal. If the heuristic is admissible
then A? explores less nodes than Dijkstra and still guarantees
the lowest cost path. On the other hand, if the heuristic is
greater than the true cost then A? runs much faster but does
not guarantee a lowest cost solution. We used the Euclidean
distance as a heuristic estimate as it is a popular choice for
real world path planning problems.

ARA?: ARA? is an anytime version of A?. It uses the
concept of adapting the heuristic function to return estimates
greater than the true cost to go [8]. It starts searching with
a high inflation factor (greater than unity) multiplying the
heuristic value to produce a quick solution, and then as time
allows reduces the inflation factor until unity, converging to
an optimal solution as computed by A?. Every time ARA?

reduces the inflation factor and starts searching again, it uses
the previous information.

Algorithm 1 TheP lanner

require: Map, fcost, Start,Goal,ModelRobot
return: PathTaskSpace, PathJointSpace

Main()
1: [TerrainMap]← Terrain()
2: [COGPath]← COGPathP lanner()
3: [FootHolds]← FootstepP lanner()
4: [JointAngles]← COGTrajectoryP lanner()
5: publish results

Terrain()
cost()

1: cost(i)←
{
fcost(modelenv,modelrobot), ∀i ⊂Map

}
2: cost(iCOG)←

{∑
cost(i′) : i′ ⊂WSleg, ∀Legrobot

}
3: update cost(i) as cost(iCOG)

NoGoArea()

1: NoGoArea←
{

1
2
× Lengthrobot,∀boundrymap

}
2: ∀i ⊂ NoGoArea remove from Map

Resolution()

1: TerrainMap← 1
2
×Resolution(Map)

COGPathPlanner()
1: COGPath← Algorithm(TerrainMap, Start,Goal, ε)

FootstepPlanner()
1: while all footHolds(LH,LF,RH,RF ) not validated do
2: for stepSize & robotHeight do
3: θnext ← Heading towards COGnode(stepSize)
4: footStepnext ← (stepSize, θnext)
5: Reachability()
6: Stability()
7: if reachability & stability are validated then
8: break the loop
9: end if

10: end for
11: end while
Reachability()

1: d← distance(footStepnext,WorkSpaceleg)
2: validated← Reachability ⇐⇒ d ≤ k
Stability()

1: Regionstable ← SupportTriangle(Legsstance)
2: if projection(COGrobot) ⊂ Regionstable then
3: validated← Stability
4: end if

COGTrajectoryPlanner()
1: [XLH , XLF , XRH , XRF ]← FootstepP lanner
2: JointAngles← IKP (XCOG, XLH , XLF , XRH , XRF )

This way every search iteration is computationally less
expensive than searching from scratch [9]. In each search,
ARA? lists the inconsistent nodes that show more than one
time change in their lowest cost. ARA? uses this information
and starts by looking into the inconsistent nodes in the
next search and hence produces an optimal solution that is
computationally less expensive.

RoMoCo '13 Proceedings of the 9th International Workshop on Robot

106



C. Footstep Planner

To realize the computed COG path, the planner needs
to generate appropriate footholds for each leg of the robot.
The FootstepPlanner procedure adopts an iterative algorithm
for searching for the largest footstep that falls under the
reachable area of each leg. For each iteration, the next four
footholds are generated; one for each leg. There are two
criteria that needs to be satisfied before a foothold is selected,
reachability and stability.

The procedure starts validating both parameters with a
maximum footstep size of 0.375m and a height of 0.6m for
the robot. The footstep size and the robot height are changed
by 10% with each iteration until all footholds are validated
for reachability and stability. The planner uses equal sized
footsteps for all the legs. Although, this approach may limit
the capabilities of the planner for selecting relatively better
footholds that might exist, on the other hand, this reduces
the complexity.

Reachability: A foothold is reachable if given the COG
position and orientation of the robot, the foothold is within
the workspace of the leg in question.

Stability: We used a predefined crawl gait that uses static
stability with the traditional definition: the robot is statically
stable if its COG projection is within the support triangle
of stance legs. The sequence of leg transfer that follows a
predefined crawl gait, cycles through the left hind leg (LH),
the left front leg (LF), the right hind leg (RH), and the right
front leg (RF).

Figure 5 presents an example of a produced path planning
solution in task-space (top-down view).

D. COG Trajectory Planner

From the task-space solution, the planner knows the posi-
tion of footholds [Figure 5] and the intermediate translations
of footsteps. Along with the robot body position (x,y,z) and
orientation (pitch, yaw, roll), we used an inverse kinematic
procedure to calculate joint angles that correspond to feet
position at each time step. This results to a complete plan
from start to goal position.

IV. TEST CYCLE

To evaluate the set of search-based planning algorithms,
we developed a test cycle with four different terrains: logs,

Fig. 5. One Task-Space path planning solution. COG path is in gray line,
footholds for left hind, left front, right hind and right front legs are in red,
green, blue and yellow circles respectively, and robot COG projection after
each cycle is in black dot.

(a) Logs (b) Rocks

(c) Round Rocks (d) Slopes

Fig. 6. Types of rough terrain.

rocks, round rocks and slopes, shown in Figure 6. A map is
a combination of three terrains, two flat terrains side-by-side
and one rough terrain in the middle. The start positions for
the path planning query are at one of the flat terrains and
goal positions are on the other. Cost assigned to each node
in the map is feature-based (not a distance).

The robot plans a path for a total of 25 combinations of
start and end points for each rough terrain scenario. A cycle
of four rough terrain models result into 100 planning queries
for each algorithm. We evaluated the search algorithms in
terms of path cost, computation time, and path length for
the total of 300 trials.

A. Path Cost

The path cost is the total cost for the COG path of the
robot in terms of the cost function. The accumulated path
cost of each algorithm is averaged over 25 trials and shown
in Figure 7. The bar shows mean outcome for each algorithm
while the error bars show the dispersion between trials.

By definition, the average path cost for each algorithm
must be the same only if the heuristic function is admissible.
The heuristic cost function that we used is not guaranteed to
be admissible and consistent. This way the heuristic-based
algorithms are expected to produce paths that are not globally
optimal. For that reason we used Dijkstra as a ground truth
algorithm since it does not use a heuristic function.

For the logs rough terrain, Dijkstra has found an average
cost value of 964.99. Averaged cost for the A? is 1008.82;
4.54% higher than Dijkstra. ARA? has found 0.53% higher

Fig. 7. Average path cost of test cycle.

RoMoCo '13 Proceedings of the 9th International Workshop on Robot

107



cost then A?. Ideally, ARA? should have improved its cost
value to the A?, but due to inadmissible heuristic, it did not
reach the exact solution as A?. For the rocks rough terrain,
the average cost of Dijkstra is 737.2. A? has found an average
path cost of 800.6; 8.60% higher cost than Dijkstra. Average
cost for ARA? is 846.97 that is 5.79% higher than A?. For
the round rocks rough terrain trials show an average cost
path of 508.1 for Dijkstra, 546.38 for A?, and 554.06 for
ARA?. Trials for the Slopes rough terrain have produced a
solution of an average value of 749.37, 749.42 and 749.43
for Dijkstra, A? and ARA? respectively. All three algorithms
show negligible dispersion. It is because the cost value over
all the nodes in the slopes terrain is uniformly distributed
along with slope.

B. Computation Time

Computation time is the total time taken by the algorithm
to compute a path. Our evaluations were performed on
commodity hardware, using a simple Matlab implementation.
Note that a C/C++ implementation is more suitable for search
based algorithms as more efficient data structures can be
used, providing a significant benefit in terms of computation
time.

For the logs rough terrain, the average computation time
of Dijkstra over 25 trials is 705.52 seconds. A? takes only
81.67 seconds; more than 8 times less than Dijkstra. ARA?

by default is faster than A?. It takes 67.46 seconds, which
is about 1.21 times less than searching with A?.

Trials for the rocks rough terrain have taken an average
computation time for Dijkstra, A?, and ARA? of 705.40,
54.11 and 62.75 seconds respectively. Computation time
taken by A? is more than 13 times less than Dijkstra.
ARA? should have taken less time than A? but it took
more than 1.15 times more than A?. Dispersion with A?

is little higher than ARA?, this means that for some of
the trials the computation time of A? is almost same as
ARA?. Results for the round rocks are almost similar as
of the rocks terrain. A? takes more than 15.49 times less
computation time than Dijkstra. Dijkstra computed a COG
path in 656.20 seconds and A? in 42.34 seconds. ARA? still
takes a little higher average computation time than A?, i.e.
58.39 seconds. Tests for slopes terrain has produced expected
results. Dijkstra, A? and ARA? take 707.30, 84.30 and 63.17
seconds respectively.

Fig. 8. Computation time of test cycle.

Fig. 9. Average path length of test cycle.

C. Path Length

The path length evaluation criterion for each algorithm
compares the total path length, in meters, from the start
to the end position. However, the shortest length path does
not mean a lowest cost path or otherwise. Heuristic-based
search should have a path of equal or lesser length than
uniform-cost search. We evaluated how close the path length
of the heuristic-cost based search is by comparing against the
solution that Dijkstra computes.

Results in Figure 9 show that there is no significant dif-
ference in length for the paths computed by each algorithm.
Note that the lowest cost does not imply shortest length, in
fact for most of our trials the lower cost paths are the ones
that avoid areas of the terrain that are evaluated as rough and
dangerous for the stability of the robot. For the logs type
of rough terrain, an average path length of each algorithm
is 5.82, 5.46 and 5.40 meters for Dijkstra, A? and ARA?

respectively. Dijkstra has produced paths that are slightly
longer that the rest of the algorithms. Average path length
for the rocks is 5.57, 5.51 and 5.41 meters for Dijkstra, A?

and ARA? respectively. On the round rocks rough terrain,
Dijkstra and A? have a difference of 0.12 meters. The path
that ARA? produces have almost same length as A?. Results
of the slopes rough terrain have introduced a little more
difference between Dijkstra and A? than previous search with
rough terrain of round rocks. Dijkstra path is 0.23 meters
more lengthy than A?. ARA? is less lengthy by 0.15 meters
as of A?.

D. Weighting factor for wA?

ARA? uses wA? in each search. It starts with an weight-
ing/inflation factor greater than unity. If the weighting factor
is too high then wA? will turn into Best-First search [10]
and will produce a solution that is highly sub-optimal.
On the other hand, if this weighting factor is too small
then wA? will result an expensive solution in terms of
computation. Therefore, the weighting factor of wA? is a
trade off between a highly sub-optimal and a computationally
high cost solution.

To find the best weighting factor for the first search
of ARA?, we experimented with a set of weights, w =
[5, 4, 3, 2, 1]. The planner runs wA? for the 9 trials on each
terrain, this is a total of 180 test runs that were computed
off-line in order to choose a suitable weighting factor.

RoMoCo '13 Proceedings of the 9th International Workshop on Robot

108



Fig. 10. Net results for the evaluation criteria of, (left) path cost, (middle)
computation time, and (right) path length.

Averaged results of the test runs for each weighting factor
are summarized bellow. Setting w = 1 (turning wA? into A?)
results into the lowest path cost i.e 777.34. For w = 2, the
path cost increased by 1.69% compared to A?. For w = 3,
the increase in cost was around 2.6%. For a weighting value
of w = 4 increased the cost by 25.5 or 3.28% of A?. There
is no significant increment in the path cost from w = 4 to
onwards.

The evaluation of wA? in terms of computation time is the
the factor that we weighted more. For w = 1 (hence wA?

turns into A?), is the most expensive computation solution.
A weighting factor of w = 2 is 38.26% less expensive than
A?. For w = [3, 4, 5] there was no significant reduction in
computation time. Path length comparison does not shown a
big difference among weighting factors of greater than unity.

The most efficient weighting factor in terms of compu-
tation time (a decrease by 38.26% to A?) and path cost
(an increase of only 1.69% to A?) was w = 2. On the
other side w = 3 resulted in similar improvement in terms
of computation time and did not increase in the path cost
significantly, compared to w = 2 (an increase of 2.6% to A?).
Average computation time for w = 2 has high dispersion and
results into some inconsistency. Considering the above we
have selected to start ARA? by setting the weighting factor
to w = 3.

V. EVALUATION

An overview of the results from the test cycle are available
in Table I. Dijkstra with uniform-cost search achieved the
lowest path cost. A? and ARA? are slightly more expen-
sive than Dijkstra in terms of path cost. Searching with
the heuristic-based algorithms was not overall much more
expensive in terms of path cost. ARA? and A? did not
converge to the same path cost solutions. This is due to the
lack of a guarantee of admissibility and consistency of the
heuristic cost function used.

The comparison in terms of computation time what sets
apart Dijkstra and the heuristic-based algorithms. Dijkstra
takes approximately ten times more time to compute a path,
since this would be the globally optimal with respect to the
cost function. A? and ARA? are very efficient compared to
Dijkstra, though the paths returned, in our case, are deemed
to be suboptimal due to the inadmissibility of the heuristic
function. ARA? in general is faster than A? even after
exhausting the weighting factor to unity.

TABLE I
COMPARISON

Dijkstra A? ARA?

Path Cost 739.92 774.31 797.55
Computation Time (seconds) 693.61 65.61 62.94

Path Length (meters) 5.62 5.43 5.34

All algorithms share almost the same path length. Dijkstra
produced an average more lengthy paths as the cost function
depends more on the local characteristics of the rough terrain
in question than the length of the path. This difference had
little impact after the planner translates the path into the
actual robot footholds.

VI. CONCLUSION

We have presented an off-line path planning framework for
the quadruped robot HyQ. Our framework divides the path
planning problem into high-level planning in the state-space
of the robot, and into low level-planning for the joint-space
of the robot. We compared a set of search algorithms for the
computation of the high-level path that the robot needs to
follow, in order to reach a given goal. Overall we presented
a simple yet robust approach to the path planning problem
in the context of a quadrupedal robotic platform.

In future work we aim to experiment with other anytime
variants of systematic search (e.g D?, AD?) and probabilistic
search approaches (e.g R?, RRT). We are currently also
working on the real-time execution aspect of our planning
framework and aim to utilize a receding horizon based
approach.

REFERENCES

[1] M. Kalakrishnan, J. Buchli, P. Pastor, M. Mistry, and S. Schaal,
Learning, Planning, and Control for Quadruped Locomotion over
Challenging Terrain, International Journal of Robotics Research 2010
(2):236-285.

[2] C. Semini, HyQ - Design and Development of a Hydraulically Ac-
tuated Quadruped Robot, PhD Thesis, Istituto Italiano di Tecnologia,
Genova, Italy, April 2010.

[3] I. Havoutis, C. Semini, J. Buchli and D. G. Caldwell, Quadrupedal
trotting with active compliance, IEEE International Conference on
Mechatronics (ICM), 2013.

[4] V. Barasuol, J. Buchli, C. Semini, M. Frigerio, E. R. De Pieri, and
D. G. Caldwell, A Reactive Controller Framework for Quadrupedal
Locomotion on Challenging Terrain, IEEE International Conference
on Robotics and Automation (ICRA), 2013.

[5] J. Z. Kolter, M. P. Rodgers, and A. Y. Ng, A Control Architecture for
Quadruped Locomotion Over Rough Terrain, International Conference
on Robotics and Automation (ICRA), 2008.

[6] M. Zucker and J. A. (Drew) Bagnell, C. Atkeson, and J. Kuffner,
An Optimization Approach to Rough Terrain Locomotion, IEEE
Conference on Robotics and Automation, May 2010.

[7] P.E. Hart, N.J. Nilsson, and B. Raphael, A Formal Basis for the
Heuristic Determination of Minimum Cost Paths, IEEE Transactions
on Systems Science and Cybernetics, July 1968, Vol. 4, No. 2, pg:100-
107, ISSN:0536-1567.

[8] M. Likhachev, G. Gordon, and S. Thrun, ARA*: Anytime A* with
Provable Bounds on Sub-Optimality, Advances in Neural Information
Processing Systems 16 (NIPS), MIT Press, Cambridge, MA, 2004.

[9] M. Likhachev, Search-based Planning for Large Dynamic Environ-
ments, PhD Thesis, School of Computer Science, Carnegie Mellon
University, Pittsburgh, PA 15213, USA, September 2005.

[10] S. M. LaValle, Planning Algorithms, Cambridge University Press,
Cambridge, U.K. 2006.

RoMoCo '13 Proceedings of the 9th International Workshop on Robot

109


