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Abstract— This paper presents a framework developed to
increase the autonomy and versatility of a large (∼75kg)
hydraulically actuated quadrupedal robot. It combines on-
board perception with two locomotion strategies, a dynamic
trot and a static crawl gait. This way the robot can perceive its
environment and arbitrate between the two behaviours accord-
ing to the situation at hand. All computations are performed
on-board and are carried out in two separate computers, one
handles the high-level processes while the other is concerned
with the low-level hard real-time control. The perception and
subsequently the appropriate gait modifications are performed
autonomously. We present outdoor experimental trials of the
robot trotting over unknown terrain, perceiving a large obstacle,
altering its behaviour to the cautious crawl gait and stepping
onto the obstacle. This allows the robot to locomote quickly on
relatively flat terrain and gives the robot the ability to overcome
large irregular obstacles when required.

I. INTRODUCTION

Legged robots are naturally superior at accessing a large
variety of surface conditions than wheeled robots. This
is partially due to the ability of legged systems (bipeds,
quadrupeds, etc.) to decouple the path of the robot from
the sequence of footholds and due to their inherent ability
to utilize a range of locomotion strategies, tailored to the
situation at hand. This way a legged robot –or animal–
can chose a dynamic locomotion strategy, e.g. trot, gallop,
when faced with terrain where accurate foot placement is
not crucial for the success of the behavior. These can be
situations where the robot locomotes on surfaces of varying
conditions, e.g. grass, soil, pebbles, gravel, and varying
inclination, where the support surface can be regarded as
continuous. On the other hand, on structured environments
or terrain with discrete footholds, e.g. steps, stairs, cluttered
rooms, legged robots can employ a range of –typically non-
gaited– static or quasi-static locomotion strategies that rely
more on accurate foothold planning, and consequentially on
the features of the terrain.

In the dynamic locomotion case, quadruped robots have
been shown to successfully operate with minimal exterocep-
tive feedback [1], [2], [3], [4]. In most cases an on-board
inertial measurement unit (IMU) is used to feedback the
systems’ attitude, while such input is adequate to overcome
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(a) Robot on step. (b) Robot model and depth data.

Fig. 1. (a) The HyQ quadruped robot stepping onto a wooden block
that is 15cm tall. (b) The HyQ model within the ROS framework. This is
used on-line in the perception layer to calculate transformations between
the defined reference frames. The red rectangle in front of the quadruped’s
body represents the depth sensor and its coordinate frame. Note that the
two snapshots do not correspond to the same time instant or trial.

stochastic disturbances and deduce the surface inclination.
In contrast non-gaited locomotion approaches rely more on
exteroceptive feedback as higher order, cognitive, processes
are critical to the success of the behavior. This, usually more
computationally intensive, feedback comes from perception
sensors, visual or depth, that are used to ‘make sense’ of the
robot’s environment and are subsequently used –primarily–
for foothold selection, map-building and localization, colli-
sion detection and avoidance, and navigation.

Our main contribution in this paper is a control frame-
work that can leverage the full set of benefits of legged
locomotion, by combining a dynamic trotting behavior and
a planning-based crawl-gait locomotion strategy. This allows
our quadruped robot –HyQ– to autonomously and dynam-
ically traverse continuous terrain of varying roughness and
statically locomote over discontinuous, challenging unknown
terrain. Such terrain includes big or irregular obstacles and
environments where careful foot placement is crucial. In
addition we wish to underline that all perception is performed
on-board, i.e. no external motion capture system is used
to localize the robot or portions of the environment, while
also no a priory map of the environment is used. To our
knowledge this is the first time that a large-scale quadruped
robot combines these two types of locomotion strategies,
dynamic trotting and planning based crawl-gait, without any
external localization or map information.



II. HYQ ROBOT OVERVIEW

All work presented in this paper was carried out us-
ing a hydraulic quadruped robot, the HyQ. HyQ weights
approximately 75kg, is 1m long, 0.5m wide and 1m tall
when its legs are fully stretched. It is designed and built
in-house and has 12 degrees of freedom, 4 of which are
electrically actuated (hip adduction/abduction joints) while
the rest are hydraulically driven [5]. In addition it has an
on-board inertial measurement unit (IMU) and recently an
RGBD color and depth sensor (Microsoft Kinect) has been
integrated (Fig. 1).

HyQ is equipped with two on-board computers that com-
municate via Ethernet. There is a pc-104 that runs real-time
patched Linux (Xenomai) and is responsible for the low-
level hard-real-time control of the robot actuators. Also real-
time critical parts of the controllers run on this machine. The
second is a stronger pc (Intel i7, 16gb) that runs Linux as
well as the open source Robot Operating System (ROS) [6].
It is dedicated to high level processes as state estimation,
localization and mapping and foothold computation. ROS is
responsible for reading and publishing data from the per-
ception sensors. All the generally computationally intensive
perception procedures are built as ROS nodes while the joint
state and attitude of the robot is published by the real-time
pc.

III. RELATED WORK

The work of Raibert [4] has been influential to research on
dynamic locomotion approaches. Most of this was concerned
with small to medium sized systems utilizing hydraulic and
pneumatic actuators, and springs. Intuitive control laws were
used for trotting while considerable gain tuning was required.
Recently Rutishauser et al. [7] explored passive compli-
ance approaches, where a lightweight passive spring-loaded
quadrupedal structure with minimal actuation (1 motor per
leg) was used. Remy et al. in [8] explored passively stable
dynamic locomotion approaches over a range of different
gaits, using a medium sized spring loaded model with a sim-
plified telescopic leg. Ugurlu et al. in [9] experimented with
trotting on a stiff electrically actuated quadruped robot where
an active compliance control framework was used. Boston
Dynamics’ Big Dog and LS3 are two of the most impressive
quadrupedal platforms. Their remarkable performance has
been demonstrated, mostly though videos online. However,
no details on the hardware design or control methods have
been published to date, therefore making the comparison
against other approaches difficult.

A large body of literature in deliberate planning ap-
proaches in quadrupedal locomotion has resulted from the
DARPA-funded learning locomotion challenge. The teams
involved in this competition produced similar planning and
control solutions [10], [11], [12]. All teams built upon a
global plan over sets of given maps, while footholds were
selected with hand-tuned, and learnt, features of varying
terrain area resolution. The difference from our case is that in
all this work a precise model of the environment was given
to the planning and control framework, while an accurate
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Fig. 2. Map builder pipeline. From the vision information (point cloud)
and the sensory information (IMU), this algorithm extracts the pose of the
camera with respect to the ground, and the relative transformation between
two consecutive frames. Each item in the text corresponds to a block in the
figure.

motion capture setup provided the complete state of the
robot.

Kolter et al. in [13] took a step further in autonomy by
removing the dependence on given maps and external state
input. In their control framework they use a well established
point-cloud matching technique to iteratively build a map of
their environment and afterwards navigate in it.

A lot of work in robotics focuses on the problem of
simultaneous localization an mapping (SLAM). A recent
example that is popular with ROS and the Kinect RGBD
sensor is [14]. This has been used to generate maps that
can be stored offline and used to localize in an online
manner [15]. Using such approaches in real-time is an open
problem as such solutions are generally computationally
more demanding while they often operate in a time-scale that
is inappropriate for a fast-paced legged robot. In previous
work [16] we used single frame information from a stereo
camera to track visual targets or modulate parameters of a
trotting gait.

IV. PERCEPTION AND MAP GENERATION

In this work, we made the assumption that walking takes
place on a mostly flat and horizontal surface and we designed
an algorithm that can work in these conditions in real-time.
We plan to improve the current pipeline by incorporating
the Iterative Closest Point (ICP) algorithm for terrains that
do not have a dominant plane.

The map generation relies also in other sensory informa-
tion, such as the IMU. In practical terms, we are using only
the yaw information. The map building pipeline as shown in
Fig. 2, and the related computations are done as follows: 1)
Acquire the sensory information including the point cloud
with color information (XYZ/RGB) and the trunk yaw from
the IMU. 2) Extract the dominant plane from the point
cloud. This is done using the standard RANSAC algorithm
on XYZ values. The plane extraction gives us the height



of the camera (Z). 3) Calculate the rotation matrix. Using
the normal of the dominant plane previously calculated, and
the yaw information coming from the IMU. 4) Calculate
the transformation between the ground space and the camera
space (homography), using four pairs of points from the point
cloud laying on the dominant plane. 5) Project theRGB points
from the point cloud into the ground surface and generate the
ground texture. This texture includes only intensity and not
color information, in single precision floating point format.
Only the points laying on the dominant plane are projected
onto this texture. The empty spaces are filled with −1.0. 6)
Compute the relative displacement between two consecutive
frames (X, Y). Instead of performing a direct comparison
between the ground texture, we do a matching in the fre-
quency domain, that offers good matching performance at a
reasonable computational requirement. Our method is based
on the phase correlation technique [17] to which we replace
the texture by the gradients. The matching is more efficient
when working with gradients because it enhances the image
features [18] while empty space in the texture is disregarded
as gradients at such patches correspond to zero. Also, FFT
works in the complex domain, this way we use the gradient
in each direction, both the real and imaginary components.
7) At this point, we have computed the 6 DoF of the relative
transformation between two consecutive frames. Next, we
extract the height-map of the current frame, and by applying
the transformation we update our ‘global’ terrain map. We
use a statistical approach using the average of the last stored
values.

A variation over the previous pipeline could calculate also
the yaw during the ground plane matching. In our case we
opted for calculating only the relative displacement of the
ground, because the yaw information coming from the IMU
is robust enough and doesn’t drift much over time. At the
same time this also saves some calculations.

The map we generate has a resolution of 1cm2. In our
application we don’t need to memorize a big surface, but just
the temporal ground surface under the robot. For this reason
we use a cyclic map that wraps the ground coordinates.

V. CONTROL FRAMEWORK

The control framework can arbitrate between two locomo-
tion behaviours. The first is a dynamically stable trot that is
suitable for fast locomotion over regular terrain of varying
inclination. The second behaviour is a deliberate planning
and crawl-gaited locomotion style that is tightly coupled to
the perceptual layer of the system and suitable for irregular
and non-continuous terrain situations. The choice between
the two behaviours is based on the perception layer of the
system and uses a simple roughness criterion, often overly
cautious, similar to [19].

A. Dynamic trotting controller

The dynamic trotting controller, also named Reactive
Control Framework (RCF) in previous work [1], consists
of two main blocks, named Motion Generation and Motion
Control blocks (Fig. 3), that work in harmony to provide
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Fig. 3. Diagram of the dynamic trotting controller, also called Reactive
Control Framework (RFC) in previous work. This highlights the main
functional blocks and the information flow.

suitable feet trajectories and to control the robot’s trunk
motion and posture.

The Motion Generation block is built on an algorithm
based on Central Pattern Generators (CPGs). The CPGs
used here consist of four non-linear oscillators, synchronized
according to the desired gait, that provide outputs as position
references for each foot. Each oscillator has parameters
directly associated to the step height, step length, forward
velocity and duty factor, which we consider as locomotion
parameters that can be modulated independently.

The Motion Control block is mainly concerned with the
robot’s balance. It uses torque, positions and IMU measure-
ments and implements a push recovery and a trunk controller
algorithm. The push recovery algorithm computes suitable
footholds that drive the robot naturally to the default posture
after an external disturbance. The trunk controller algorithm
computes the joint torque references of the stance legs, to
obtain a desired force and moment acting on the trunk.

B. Deliberate planning controller

We chose a craw-gait strategy that is not dynamic, in
the sense that the CoM of the quadruped has phases where
its forward and lateral velocity are zero. This is beneficial
for rough irregular terrain where the interaction needs to be
minimal as the terrain conditions can change unexpectedly.
This problem arises as the interaction model cannot be
overly accurate, for example forward momentum can make
a large rock move but cautious stepping in general will
limit this effect. In the next subsections we describe the
locomotion pattern used, the controller to realize this gait
and the procedure that selects appropriate footholds.

1) Locomotion gait: We use a cyclic crawl gait that
utilizes a static stability criterion to produce the quadruped’s
walking pattern. The gait cycle follows the pattern; left hind
(LH) to left front (LF) to right hind (RH) to right front leg
(RF). An overview of this cyclic gait is sketched in Fig. 4.
This pattern minimizes the trajectory length that the trunk
travels within the alternating support triangles, while in our
implementation there is no backward motion. The swing



Fig. 4. The craw gait locomotion strategy. From left to right, the succession of swing legs and support triangles. The CoM is positioned over the current
support triangle before a leg swing motion is initiated. Note that the CoM of the quadruped moves only forward.

targets are provided by the foothold selection procedure,
using feedback from the perception layer, as described in
the following section. Furthermore the attitude of the robot’s
trunk is modified accordingly, resulting in pitching up when
the robot is stepping on an obstacle and pitching down
when the robot is stepping off an obstacle. This is beneficial
as it increases the overlap between the fore or hind legs’
workspace with the environment geometry. This way the legs
seldom reach an overstretched configuration.

2) Foothold selection: The success of the crawl gait
locomotion controller depends highly on the selection of
appropriate footholds. This problem has been the focus
of much research work resulting in a variety of generally
cost based approaches [10], [12]. Most of such approaches
assume accurate and global knowledge of the locomotion
surface and often millimeter-accurate localization from an
external source, typically a motion capture system. In our
approach we assume that the terrain is unknown, thus cost
functions that depend on multiple terrain resolutions are not
usable. We focused our effort to a local cost evaluation on
the vicinity of a nominal swing target reference. This way the
controller queries the perception layer with a Cartesian point
in the robot’s frame of reference. This in turn serves as a
midpoint for the surface evaluation of a predefined grid of an
area of 0.2m2 around the given point. A height-map centred
around this point is extracted and the surface derivatives
are calculated (local gradient). The surface derivatives with
respect to the plane are summed together and the resulting
matrix is convolved with a 3× 3 matrix of ones to produce
a filtered estimate of the local surface change. This can be
regarded as a local costmap of the given surface based on
the rate of change of the surface. A mask with 6 predefined
4×4 target ‘windows’ is used to calculate the cost at these 6
patches. The patch with the lowest score is the one where the
underlying surface exhibits the least change and the lowest
score patch is chosen as the subsequent swing leg target.
Fig. 5 presents an example of the local foothold selection
procedure. The size of the local patch and the size of the
cost windows was selected based on the size of the robot’s
foot (2.5× 2.5cm).

3) Locomotion controller: The control framework uses
an inverse dynamics calculation procedure and a low-gain
PD controller to execute the planned motions (Fig 6). The
benefits from this control setup are twofold and can be
regarded also as coupled. First the interaction with the
environment, especially when the contact estimation is not

accurate, is smoother as the feedback control (PD) is highly
compliant. Second the accuracy of tracked motions is greatly
increased, resulting to more accurate contact estimation and
interaction with the environment.

We use the floating base inverse dynamics algorithm
presented in [20] that produces a numerically robust and
analytically correct solution for the desired actuator torques,
τ , given a reference trajectory that the gait controller gen-
erates, i.e. (qr, q̇r, q̈r). In the interest of space we refer
the interested reader to the inverse dynamics work in [20],
nonetheless a brief overview of the approach is given below.

In the usual formulation the system configuration is rep-
resented as:

q =
[

qT
r xT

b

]T
, (1)

where qr ∈ Rn is the joint configuration of the rigid-body
robot model, where n = 12 for our case, and xb ∈ SE(3) is
the position and orientation of the coordinate system attached
to the robot base, typically the robot’s trunk, and measured
with respect to the global inertial frame.

The equations of motion when the quadruped is in contact
with the support surface are:

M(q)q̈ + h(q, q̇) = ST τ + JTC(q)λ, (2)

where M(q) ∈ R18×18 is the floating base inertia matrix,
h(q, q̇) ∈ R18 is the floating base centripetal, Coriolis and
gravity forces, S is the actuated joint selection matrix (in
essence separating base and robot joints) τ ∈ (R)12 is the
vector of joint torques, JC ∈ Rk×18 is the constraint Jacobian
of k linearly independent constraints, and λ ∈ Rk is the vec-
tor of k linearly independent constraint forces. Constraints
are typically foot contact locations where external forces

Fig. 6. The control structure used to preform the planned motions result-
ing from the non-gaited locomotion behaviour. The locomotion controller
receives perceptual feedback in the form of appropriate stepping targets
(Fig.5). The locomotion controller produces a reference plan for the inverse
dynamics and the low-gain PD controller. The resulting torques of both the
feedback and feedforward block are combined and sent to the robot.
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Fig. 5. An overview of the local foothold selection procedure. From left to right; a 0.02× 0.02 surface around the nominal swing target is converted to
a height map. The local gradients are then computed, note that the surface estimate and surface gradients are typically noisy. The combined local gradient
is filtered with a 3× 3(cm) matrix and a mask with 6 equidistant windows is used to calculate the local cost of each of the 6 patches. The midpoint of the
patch with the lowest cost is chosen as the swing target. This way the quadruped avoids stepping near sudden surface height changes (steps) and promotes
stepping on the most flat path that the local surface can provide. The size of the local patch and the size of the cost windows was selected based on the
size of the robot’s foot.

are applied to the floating base system, i.e. ground reaction
forces (GRFs).

The solution is of the form,

τ = (SuQT ST )+SuQT [Mq̈d + h], (3)

where Su is a selection matrix and Q is the dynamics
projection matrix that results from a QR decomposition of
the control space.

One problem that the above formulation poses occurs
when contact conditions change. In that instant, the inverse
dynamics solution changes from one support triangle to the
next, something that can result in abrupt torque changes and
can potentially result to sudden jerks that can render the
system off-balanced. As the contact conditions change in a
planned fashion we overcome this limitation by interpolating
between the two contact model solutions in a linear manner.

VI. EXPERIMENTAL RESULTS

We have carried out a set of experimental trials both inside
our lab, locomoting on a treadmill, and outside, on relatively
flat concrete ground. In the latter case we have used wooden
boards to simulate irregular terrain as well as a flat wooden
construction of approximately 1m2 area and 15cm height.
In this setting the quadruped is asked to move forward while
no overall -navigation level- planning was utilized.

Trotting: The trotting controller as mentioned earlier is
able to trot with a speed up to 0.5m/s according to the con-
straints imposed by the perception layer. During trotting the
robot can overcome obstacles up to 5cm without difficulty.
This is achieved due to the controlled compliance of the legs
combined with the trunk attitude corrective term as further
described in [1]. When the robot perceives obstacles that are
taller than 5cm the trotting controller is brought to a stop
and the behaviour switches to the crawl gait.

Crawl-gait: The crawl gait is a slow locomotion behaviour
with emphasis on stable foot placement. The velocity of the
trunk in this mode never exceeds 0.05m/s in the forward
direction as the motions are executed with strict stability
bounds in mind. Nevertheless with this locomotion mode
we have been able to overcome obstacles up to 0.15m, over
20% of the HyQ’s leg in a fully extended configuration.
Occasionally foot-slipping was observed, but this disturbance
was never large enough to impact the stability of the robot.

Perception: Overall the perception layer has been consis-
tent while it operates with an average bandwidth of 15hz.
When the crawl-gait controller queries the perception layer
for the next locally optimal foothold, it takes on average
0.04s to complete this computation and to both-ways com-
municate. In more detail, this is the time taken for the query
to be sent from the crawl-gait controller to the ROS layer,
to transform the point to the appropriate reference frame,
retrieve the local patch from the built map, calculate the
locally optimal point and reply back to the controller.

Data from a complete trial is presented in Fig.8. In this
example the robot trots forward until it perceives an irregular
obstacle. This results to a transition from trot to crawl where
the robot needs to halt and reposition its legs accordingly.
The crawl gait locomotion controller is then used and the
two fore legs step on the obstacle. The data in Fig.8 is the z-
axis position of the robot’s feet in the trunk (local) reference
frame. Snapshots from an experimental trial with a 15cm
high step are presented in Fig. 7.

Limitations: We experimentally evaluated the trot con-
troller to be utilized with speeds up to 0.5m/s. Nevertheless
the trot controller can locomote with a velocity up to 2.0m/s.
When using a fast-paced trot (v > 0.5m/s), or sometimes
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left front foot then steps on the obstacle and the crawl gait cycle continues.



Fig. 7. An experimental trial on concrete terrain with a 15cm high step. From left to right: the robot trots up to the obstacle/step and the perception layer
stops the trotting behaviour. The behaviour switches to the crawl-gait controller that uses perceptual feedback to step on the flat obstacle. The complete
video sequence is available as accompanying material.

when locomoting over irregular terrain, the map building
procedure has difficulty registering new input data. This can
be improved by using a state estimation procedure, that can
feedback to the internal position estimate that the perception
layer keeps. Another difficulty was that the depth/vision
sensor has a limited field of view in this configuration. This
restricts map building to an area directly underneath the
front part of the robot. In the future we aim to address this
limitation using a stereo camera that can provide better/faster
depth estimates and a larger field of vision/depth perception.
This way we will be able to utilize faster trotting by combing
planning in a larger scale (navigation) map.

VII. CONCLUSION

We presented a framework that utilizes on-board percep-
tion to adapt a large quadruped’s behaviour according to
the situation at hand. This framework can switch between
a dynamic trot and a stable crawl gait. The former is chosen
when locomoting over regular and inclined terrain while the
latter is used for traversing irregular and often structured
environments. All computations, processing and control are
performed on-board and no external information or a-priory
knowledge of the environment was used.

Future work: We are currently working on a dynamically
balanced deliberate planning controller that uses the ZMP
stability criterion. This will serve to increase the robot’s loco-
motory speed over irregular terrain and minimize unwanted
forward/backward robot trunk oscillation. In addition we are
working on a more elaborate vision based mapping system
that combines height map data with surface classification,
and on a more robust terrain/foothold cost estimation tech-
nique that allows better foothold selection and more effective
use of the features of the environment.
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