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Abstract. We present a framework for generating motions drawn from parametrized

classes of motions and in response to goals chosen arbitrarily from a set. Our frame-

work is based on learning a manifold representation of possible trajectories, from a

set of example trajectories that are generated by a (computationally expensive) pro-

cess of optimization. We show that these examples can be utilized to learn a man-

ifold on which all feasible trajectories corresponding to a skill are the geodesics.

This manifold is learned by inferring the local tangent spaces from data. Our main

result is that this process allows us to define a flexible and computationally efficient

motion generation procedure that comes close to the much more expensive compu-

tational optimization procedure in terms of accuracy while taking a small fraction

of the time to perform a similar computation.

1 Introduction

Humanoid robots provide a flexible platform for a variety of tasks including rough

terrain locomotion and dexterous manipulation. Typically, this flexibility also carries

the burden of increased complexity that adversely impacts the practical usability of

such systems. For example, if a humanoid robot were tasked with locomotion on an

uneven terrain - requiring the ability to continually vary foot placement positions in

response to external events, it is hard to define a suitable motion generation strategy

for two reasons. Firstly, ensuring that the motion satisfies all requirements ranging

Ioannis Havoutis

Department of Advanced Robotics, Istituto Italiano di Tecnologia, Genova

e-mail: I.Havoutis@iit.it

Subramanian Ramamoorthy

Institute of Perception, Action and Behaviour, School of Informatics,

University of Edinburgh

e-mail: s.ramamoorthy@ed.ac.uk

∗ An extended version of this paper appears in [4].

K. Mombaur and K. Berns (Eds.):Modeling, Simulation and Optimization, COSMOS 18, pp. 43–51.

DOI: 10.1007/978-3-642-36368-9_4 c� Springer-Verlag Berlin Heidelberg 2013



44 I. Havoutis and S. Ramamoorthy

from high-level planning goals to intermediate stability constraints and lower level

actuator of joint constraints is a hard computational problem. Even if we had the

computational resources, it can be hard to actually specify all of these requirements

in a well posed analytical formulation. One way to approach such problems is by

learning from demonstration trajectories. Here, the problem is to infer the continuum

of trajectories in the solution space corresponding to a specific skill from a sparse

set of demonstrated solutions. Additionally, we must represent this set in a way

that allows generation of new motions, directed to previously unseen goals, that are

consistent with prior experience.

While there are a number of different state of the art techniques for learning

by demonstration algorithms, they all share some weaknesses with respect to this

specific goal. Many existing methods focus on reproduction of patterns of movement

for an end effector [1], without direct consideration of joint-space motion either to

address constraints or exploit additional flexibility, or they focus on tasks where it is

acceptable to define independent joint-level trajectories that can be simultaneously

used in parallel [5]. While these are good for, say, reproducing human motions, they

may not be well suited to the needs of a flexible motion generator in an autonomous

system that must be deployed in a continually changing world.

Our approach represents each skill as a manifold that is embedded in the robot’s

joint space. This manifold represents the set of all possible solutions to a skill and

it is inferred from a few example solutions to corresponding optimization problems

(or, if available, human demonstrations). When presented with a planning query we

can generate a path that is within this set, generated by computing the geodesic path

over the manifold.

In this paper, in order to illustrate the behaviour of the algorithm, we utilize ex-

ample trajectories that are obtained from a computational method which involves

numerical optimization. These solutions are computationally expensive and not fea-

sible for online operation. However, they can serve the same role as demonstration

data. With this, we have a clear idea of the specific properties of each task being con-

sidered, and a measure of algorithm performance against reasonable ‘ground truth’.

2 Learning for Motion Synthesis

In the usual formulation, manifold learning is aimed at finding an embedding or

‘unrolling’ of a nonlinear manifold onto a lower dimensional space while preserv-

ing metric properties such as inter-point distances. Popular examples include MDS

[3], LLE [7] and ISOMAP [8]. However, much of this work has been focused on

summarization, visualization or analysis that explains some aspect of the observed

data.

On the other hand, we are interested in preserving properties of trajectories in

the data set. So, formally our goal is to learn a model of the tangent space of the

low-dimensional nonlinear manifold, conditioned on the adjacency relations of the

high dimensional data. Such a learnt manifold model can then be used to compute
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geodesic distances, to find projections of points on the manifold and to directly gen-

erate geodesic paths between points.

2.1 Learning the Manifold

Our nonlinear manifold learning algorithm is based on Locally Smooth Manifold

Learning by Dollar et al. [2], which we have adapted with robot motion specific

issues in mind. In particular we have replaced the neighbourhood graph creation

process with a procedure that considers task space distances as well as ensuring that

temporal neighbourhood relations along the demonstrated trajectories are respected,

similar to the procedure used in ST-ISOMAP [6].

Given that our D-dimensional data lies on a locally smooth d-dimensional mani-

fold in D-dimensional space, where d <D, there exists a continuous bijective map-

ping M that converts low dimensional points y ∈ R
d from the manifold, to points

x ∈ R
D of the high dimensional space, x = M (y). The goal is to learn a mapping

from a point on the manifold to its tangent basis H (x),

H : x ∈ R
D �→

�

∂

∂y1

M (y) · · ·
∂

∂yd
M (y)

�

∈R
D×d

where each column of H (x) is a basis vector of the tangent space of the manifold

at y, i.e. the partial derivative of M with respect to y.

We then learn a model of the mapping with parametrization θ , i.e. Hθ , based

on the generalized neighbourhood relations of the data, N, and the centred estimate

of the directional derivative between two neighbours, Δ i
. j. The model is trained by

minimizing the error function:

err(θ ) = min
{ε i j}

∑
i, j∈Ni

�

�Hθ (x̄
i j)ε i j−Δ i

. j

�

�

2

2
,

where ε i j is an unknown alignment factor and Ni is the set of neighbours of xi.

Solving for the bases and their alignment simultaneously is complex, but if either

one is kept constant, solving for the remaining variables becomes a tractable least

squares problem. Optimizing the model requires alternating between these two least

squares problems, until a local minima has been reached. Typically more than one

random restart is performed to avoid local minima [4].

2.2 Optimal Geodesic Paths

By approximating the tangent space of the manifold, we gain access to a variety of

geometric operations. Central to our robotics aims is the ability to compute geodesic

paths; paths that lie on the low dimensional manifold. In this spirit, we now change

our notation of points from x to q, to denote poses a robot can achieve in a config-

uration space.
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(a) Task space
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(b) NN graph
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(d) Tangent space

Fig. 1 Learning the optimality manifold of a 3-link arm. (a) The planar task space of the

arm and subsampled points (blue) used for leaning. (b) The neighbourhood graph used for

learning a manifold. (c) The optimality manifold that we wish to learn. Light gray points

are not used for learning but are plotted to give a better estimate of the geometry of the

manifold. Note that the manifold is not planar but twist and turns as we move down the q3

axis. (d) The learnt tangent space model. Blue and green arrows are basis vectors evaluated

at points that correspond to the original grid.

Our goal is to find the shortest path between two specified poses qstart and

qend ∈ R
D, D being the dimensionality of the configuration space, that respects the

geometry of the learnt manifold. In a robotics context, being on the manifold es-

sentially means that the constraints (e.g., optimality w.r.t. a particular task-specific

cost) inherent in the training data are satisfied. In practice, we discretize our path

into a set of n via points, q= qstart , . . . ,qend , with qstart and qend being fixed, and we

follow a combination of gradient descent steps to minimize the length of the path

while not leaving the support of the manifold.

We first initialize a path by linearly interpolating between qstart and qend , while

following the geometry of the manifold, until the distance between consecutive

points is acceptable. With the learnt tangent space we iteratively compute a mini-

mum energy solution that makes qis “stick” to the manifold and minimizes the length

of the path without leaving the support of the manifold. The former is accomplished

by following the orthonormal (to the manifold) component of the gradient of

errM (q) = min
{ε i j}

∑
i, j∈Ni

�

�Hθ (q̄
i j)ε i j− (qi− q j)

�

�

2

2
,

and the latter by following the parallel (to the manifold) component of

errlength(q) =
n

∑
i=2

�

�qi− qi−1
�

�

2

2
,

while keeping the endpoints fixed.

The next sections present two examples of our method. The main thrust of our

argument here is that the manifold representation provides a concise encoding of all

motions corresponding to a skill. This encoding is equivalent to a computationally

more expensive optimization process, but requires a fraction of the computational

effort. We demonstrate this by first presenting a 3-dim motion problem, where the

manifold can be easily visualized and the algorithm intuitively understood. Then,

we show a more complex example involving a humanoid robot.
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3 Experiments on a Robotic Arm

The planar 3-link arm is a series of three rigid links of unit length that are coupled

with hinge joints, producing a redundant system with 3 degrees of freedom that is

constrained to move on a 2 dimensional plane (task space).

The skill that we learn in this setting is the set of all solutions to a specific re-

dundancy resolution scheme. Here, we choose the joint space configuration, q, that

minimizes the distance to a convenience (robot default or minimum strain) pose, qc.

Formally, min�q−qc�
2
, subject to f (q)−x= 0,where f is the forward kinematics

and x is the goal endpoint position on the plane. The points trace a smooth nonlin-

ear manifold in joint space (Fig. 1(c)). Note that the manifold is not planar but lies

on a convex strip that twists clockwise and tightens as we travel down the q3 axis.

Also, different redundancy resolution strategies would produce different optimality

manifolds. In general, this kind of information may not be explicitly known (in the

case of human demonstration) or visualizable for more complex problems.

We collect data (joint space points) from a grid in task space and subsample 100

points as our training set (Fig. 1(a)). We compute the neighbourhood graph from

the task space distances and learn a model of Hθ with 10 RBF’s and 100 points, the

blue points in Fig. 1(c). We can subsequently evaluate Hθ at any point in our joint

space. Fig. 1(d) shows the tangent bases evaluated at every point of the previously

generated grid. Note that the basis vectors are aligned and vary smoothly, i.e. we

obtain a good generalization within the region of support of the data.

3.1 Evaluation

We evaluate the accuracy of the approximation that the learnt manifold provides

in two generalization settings. One measures the interpolation ability, where we

compare against ground truth data within the region of support of the training data,

and the second demonstrates the extrapolation ability, where we compare what our

model generates outside the region of support of the training data. We also record

the time needed to produce the trajectories. In both cases we compare 50 trajec-

tories with random start and end points that are produced with geodesic paths on

the learnt manifold, against what the numerical optimization produces for the same

goals. Samples of such paths for both generalization cases are depicted in Fig. 2(a)

and (b) (grid points in light gray for comparison).

We compute the RMSE, for each trial and for each case, between ground truth and

prediction of model, for a total of 10 trials. The averaged errors are depicted in Fig.

2(c). Note that the RMSE axis is in log-scale while the difference of the two bars is of

2 orders of magnitude. To be precise, the average RMSE for paths generated within

the region of support of the data is 1.8935×10−4±3.6013×10−5 (practically zero),

while beyond the support of the data the averageRMSE is 6.84×10−2±2.19×10−2.

In addition, computing the optimal geodesic paths takes less time on average (Fig.

2(d) in both cases).
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Fig. 2 Results of the 3-link arm experiments. Novel task space trajectories produced with

random start and end points where (a) demonstrates generalization within the region of sup-

port of the data, while (b) demonstrates generalization beyond the region of support of the

training data. (c) RMSE error of generated trajectories against ground truth for the two cases.

In the interpolation scenario the error is practically zero (y axis in log-scale). (d) Absolute

planning time for the two cases. Note that in the interpolation case the length of the paths

is consistently low.

4 Experiments on a Humanoid Robot

To demonstrate the scalability of our approach we also present an example involv-

ing a humanoid robot platform. We use the KHR-1HV (Fig. 3(a)), that stands ap-

proximately 35cm tall and has 19 DoFs. We focus on the task of walking, with

the aim of learning the manifold of quasi-static stepping trajectories for random

(a) Robot
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Fig. 3 The KHR-1HV humanoid robot used, (d) skeleton model and (a) physical robot. Task

space representation of the training data through forward kinematics. Random start and end

point leg swing trajectories of the left (b) and right (c) legs. (e) and (f) the neighbourhood

graphs that result from the task space distances between demonstrated data (units in cm).

This provides the task-specific distance metric for the high dimensional joint-space. Note

that depicted here are only feet midpoint positions while the datasets consist of the joint

space points that are 19-dimensional.
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Fig. 4 Experimental results with the humanoid robot. Random start and end point trajectories

for left (b) and right (b) leg swings that have been generated from our learnt manifold,

via geodesic path optimization (units in cm). (c) RMSE (degrees) of generated data against

ground truth. (d) absolute time needed for planning and optimization with our method and

the nonlinear optimization method (y axis in log-scale) described in the text.

foothold placements, within a reasonably large step interval. We generate data with

an unconstrained nonlinear optimization method that uses a hand-crafted cost func-

tion. Formally, the optimization problem is of the form minqJ (q), subject to f (q)−
x = 0, where J is the cost function, f is the forward kinematics and x is a goal

task space position. The cost function is a mixture of task constraints and stability

constraints.

We collected 20 full body joint space trajectories where start and goal points of

every step have been randomized within a reasonable reaching distance (Fig. 3(b)

and 3(c)). We separated each footstep to a swing phase and a weight shift phase. This

way we divided the learning into two components, leg swing manifold and support

weight shift manifold, as the measure of optimality is essentially different for each

phase. We compute a neighbourhood graph (Fig 3(f) and 3(e)) and learn a manifold

for each stepping phase. We set the dimensionality of the manifolds to be 3, being

the simplest model that yields a low error.

4.1 Evaluation

The learnt manifolds are able to produce smooth walking trajectories that satisfy

the optimization criteria used to produce the training data. Specifically, the average

RMSE (degrees) of the leg swing manifold for the ground truth was as low as 0.12

while the average RMSE of the weight shift manifold ranged on average near 0.06

(Fig. 4(c)). This implies that the geometry of the step manifold is more complex

and some of its features might be smoothed over by the RBF model. Nonetheless the

procedure was able to produce stable walking in the continuum of the reaching space

of the robot as depicted in Fig. 4(a) and 4(b) for right and left swings accordingly.

The absolute time needed to generate an optimal geodesic path on the pair of

manifolds (swing leg and weight shift) from random start to random end points was

approximately 1.5552± 0.4785 seconds (in a standard, not particularly fine-tuned,

numerical implementation of the algorithm) whereas generating a trajectory with

the optimization procedure required approximately two minutes on average, an ap-

proximately 98% increase in speed. This is a significant decrease in absolute plan-

ning time, which makes it possible to deploy this algorithm in realistic application
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Fig. 5 Random walk generated by geodesic path optimization on the learnt manifolds for

randomized task-space footholds and stills of the robot executing the planned motion

scenarios (e.g. RoboCup). A randomized walk sequence entirely generated with our

method is depicted in Fig. 5, where foothold positions have been randomly gener-

ated and are previously unseen.

5 Conclusions and Future Work

We have demonstrated how a manifold representation can capture the flexibility re-

quired of a motion generation scheme operating in a continually changing environ-

ment. As used here, we have a computationally efficient procedure that can recover

all of the solutions of a more expensive computational optimization procedure while

also allowing for learning from data - where all requirements may not be easy to

encode in an analytical framework. This work adds to the literature on learning by

demonstration by addressing the cases where the task is more complex than sim-

ply reproducing specific task space trajectories and involves further kinodynamic

requirements in the joint space, etc. We demonstrate this using a couple of robotics

examples - a 3-link arm, where the results are easy to visualize, and a humanoid

robot, where the stepping task is intuitively understood. Our long term goal is to

utilize this procedure as part of a larger system that would be able to learn, plan and

execute motions robustly and in real time.
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