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I. MOTIVATION

Many humanoid robotic tasks of common interest require
the agent to satisfy a number of complex skill specifications.
For instance, the task of handling a tray in a typical service
scenario requires the robot to achieve one of a certain
set of goal states while respecting state constraints that
might induce slipping, falling or collisions while also taking
care of the manipulator dynamics and internal constraints.
Everyday tasks, like tray handling, need to be defined over
a nontrivially large domain but in the absence of models it
is hard to define robust task-level controllers.

We develop a framework that uses manifolds to en-
code robotic skills. Such skill manifolds are learnt from
demonstrated data and result in control strategies suitable
for problems defined over large domains with strict skill
specifications. In such scenarios planning and state evolution
is restricted to geodesic trajectories, as states off the manifold
fail the skill specifications implied by the demonstration data
(e.g. Fig. 1).

II. APPROACH

Our framework of learning control strategies involves two
components. Firstly, we encode the task in a skill manifold,
a subspace in the underlying state space that is defined
by the equivalence class of trajectories corresponding to
various instances of the particular task. Then, we define cost
hypersurfaces that penalize deviations from this subspace of
states within the ambient space. This yields a vector field
in the ambient space that constitutes both a basic plan from
an initial condition and a controller to counteract unforeseen
perturbations.

This gives a clearer interpretation to what the controller is
achieving: enforcing a large domain vector field towards the
manifold and along the manifold. This makes the consider-
ation of obstacles [1] and disturbances much more natural,
without having to worry about how they themselves may be
mapped to an artificial low dimensional space.

Other methods have difficulty achieving large domain
coverage as learning-based probabilistic approaches provide
good local approximations but lack more global consider-
ation of the system or task [2], [3], [4]. We can naturally
handle this by considering the full space of the system,
consisting of the union of the desirable subspace (manifold)
where geodesic trajectories (need to) evolve, and the ambient
space that surrounds the learnt manifold model.

I.Havoutis is with the Advanced Robotics lab within the Italian Institute of
Technology {Ioannis.Havoutis@iit.it}, S.Ramamoorthy leads
the Robust Autonomy & Decisions Group within the Institute of Perception
Action and Behaviour, School of Informatics, University of Edinburgh
{S.Ramamoorthy@ed.ac.uk}.

Fig. 1. A sketch of an example where the ability to project back
to the desired space is necessary. (a) The system executes a geodesic
trajectory when an unforeseen perturbation drives the state of the system
to an off-manifold point. The remaining trajectory points are discarded. (b)
Replanning from an off-manifold point would be insensible to the desired
state evolution. Instead, we find the projection of the off-manifold state on
the underlying geometry. This is the closest point that we then control for
in a reactive manner. (c) A new geodesic trajectory is replanned, starting
from the projection state and reaching to the goal state.

Our method provides a consistent metric that is used to
evaluate the “value” of states in ambient space in a general
model-free fashion (2(b)). We demonstrate efficient path
planning, fast re-planning and online control in the face of
relatively large scale perturbations for a simulated 3-link arm.

III. MANIFOLD CONTROL ON THE 3-LINK ARM

This example elucidates the basic concepts underlying
our approach. With the 3-link planar arm we can explicitly
visualize both the configuration space and the manifold that,
in this case, corresponds to a specific redundancy resolution
strategy. The arm is a series of three rigid links, of 1/3
length, that are coupled with hinge joints, producing a redun-
dant system with 3 degrees of freedom that is constrained to
move on a 2 dimensional plane.

We randomly sample 100 Cartesian points from the upper
semicircle of the task space of the system. We run the task
space dataset through an iterative redundancy resolution pro-
cedure that minimizes the weighted distance to a convenience
(e.g., minimum strain) pose,

min ‖w(q− qc)‖2 , subject to f(q)− x = 0, (1)

where w is a weighting vector, f is the forward kinematics
and x is the goal endpoint position on the plane, and get the
corresponding joint space datapoints, q = (q1, q2, q3).

The resulting q’s trace a smooth nonlinear manifold in
joint space, depicted in Fig. 2(a). This is the surface that the
family of solutions belonging to the specific redundancy res-
olution strategy trace. Also different redundancy resolution
strategies would produce different optimality manifolds. We
note that, in general, this kind of information is not explicitly
known (in the case of human demonstration) or visualizable,
for many complex problems.
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(a) Learnt manifold model. (b) Manifold metric.
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(c) Perturbed geodesic path.
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(d) Example in task space.

Fig. 2. (a) The manifold model learnt from data; the neighbourhood graph in task space (inset plot), and the learnt tangent space that the model predicts
in the high dimensional space. The thin gray mesh surface is produced by densely sampling the manifold and helps convey a clearer perspective of the
geometry of the space in question. (b) Volumetric plot of metric derived from our model. The metric evaluates the distance to the modelled surface and it
smoothly surrounds the underlying manifold. Distances range from dark blue (small) to red (large), while the closest distances are completely transparent
for clarity. (c),(d) A typical trajectory resulting from our approach. A geodesic path from start to end is computed, with a random perturbation occurring
at time t = 0.25 that pushes the state away from the manifold. This new state is projected back on to the manifold to find the closest feasible state. A
path from the projected point to the goal is then executed before continuing along. The dashed blue line is the initial predicted trajectory while the red
line is the motion due to the (severe) perturbation occurring at the first red star. The state is then pushed away from the initial trajectory and a new path
to the goal is replanned after the novel state is projected on the learnt manifold.

A. Implementation

We can see that the manifold can be naturally represented
with a two dimensional tangent space, and we learn a model
of the manifold, Hθ, as an approximation with Radial Basis
Functions (RBFs). We can subsequently evaluate Hθ at any
point in our joint space. For example Figure 2(a) shows the
learnt tangent basis approximation evaluated at the centres
of the RBFs that build up the model. Note that the basis
vectors are aligned and vary smoothly, i.e. we obtain good
generalization within the region of support of the data. This
way, in order to traverse the manifold we need to evaluate
the learned tangent basis and follow each local frame for
each consecutive step, in other words follow the blue and
green arrows of Figure 2(a) for each point in question.

B. Results

To evaluate the accuracy of the model we randomly pick
100 start and end points and plan a trajectory between them,
first with our method and second, with a naive quintic poly-
nomial method as in Craig [5]. We distinguish two cases; an
unperturbed trajectory, and a random perturbation occurring
at t = 0.25 (Figure 2(c)). We calculate the average cost per
trajectory and average over the results for each case (Table
I). The results show that the use of the manifold achieves
consistently lower cost trajectories, while the difference is
multiplied in the case where a perturbation occurs. The
interpretation being that the naive planner is forced to stay
in a high cost patch of the state space while the manifold
finds the appropriate short path to the cost-optimal surface.

IV. CONCLUSION

Integrated planning and control schemes need to accom-
modate sophisticated specifications arising at all levels from
joint-level limits to global stability and other multivariate
constraints, e.g., [6], [7]. We propose an approach that
solves this problem by utilizing a learnt manifold and a
correspondingly derived cost hypersurface, in a model free

TABLE I
MEAN COSTS EVALUATED AGAINST THE TRUE COST FUNCTIONS.
RESULTS ARE MEAN±STANDARD DEVIATION OVER SETS OF 100

RANDOM SAMPLED TRIALS.

System Method Unperturbed traj. cost Perturbed traj. cost

3-link naive 0.9239± 0.1799 1.401± 0.3610
manifold 0.8724± 0.1723 1.214± 0.2597

setting. The distance to the learnt manifold can be viewed as
a metric of closeness to the desired family of solutions, while
being able to directly compute the best feasible state given
an arbitrary ambient state space point allows us to reactively
accommodate unforeseen perturbations that drive the state of
the system to the undesired (off-manifold) ambient space.
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