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Abstract. Motion synthesis for humanoid robot behaviours is made
difficult by the combination of task space, joint space and kinodynamic
constraints that define realisability. Solving these problems by general
purpose methods such as sampling based motion planning has involved
significant computational complexity, and has also required specialised
heuristics to handle constraints. In this paper we propose an approach
to incorporate specifications and constraints as a bias in the exploration
process of such planning algorithms. We present a general approach to
solving this problem wherein a subspace, of the configuration space and
consisting of poses involved in a specific task, is identified in the form of
a nonlinear manifold, which is in turn used to focus the exploration of a
sampling based motion planning algorithm. This allows us to solve the
motion planning problem so that we synthesize previously unseen paths
for novel goals in a way that is strongly biased by known good or feasible
paths, e.g., from human demonstration. We demonstrate this result with
a simulated humanoid robot performing a number of bipedal tasks.

1 Introduction

One of the most significant recent trends in robotics is the push towards ro-
bust autonomy with complex robots such as humanoids. In principle, humanoid
robots and other related architectures are highly versatile and capable of per-
forming an unprecedented variety of tasks in applications ranging from service
at home to rescue in rugged terrains. However, due to the inherent complexity
of these systems, robotics researchers have struggled to realise this promise of
robust and flexible operation in a multitude of environments. From the point
of view of motion synthesis, i.e., the generation of feasible trajectories for all
the joints of a robot given a family of task level goals such as, say, foot place-
ment points, one of the big difficulties has been that of reconciling the need for
efficient exploration of all possible ways to perform a family of tasks with the
need for understanding of the intrinsic constraints that define realisability of the
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Fig. 1. Left: Schematic representation of a low-dimensional manifold as used in our
algorithm. Combining an RRT planner with manifold learning focuses random sam-
pling to a task relevant subspace. An RRT is grown by searching this manifold M, a
nonlinear subspace of the configuration space. A, B and C: Taking a step with the
humanoid is a process of following a path connecting configuration A (green) with con-
figuration B (blue). The point C (red) represents a configuration that is not reached in
any realisation of the task. Furthermore task specific geodesic distances can be com-
puted, e.g. distance (dotted line) between x and x′ and samples (white) lying close
to the manifold can be projected onto it (black). The geodesic distance is used to
calculate nearest neighbours and step sizes while projection guides sampling onto the
task-relevant subspace.

task. Machine learning methods are efficient in capturing intrinsic task-specific
constrains within restricted domains, i.e., focussing on properly interpolating
between observed examples, while sampling-based motion planning methods are
more focussed towards large-scale exploration of the global structure of config-
uration spaces. In the absence of specialised knowledge of task constraints, this
can involve significant computational complexity.

In fact there are a number of tasks, e.g., locomotion in RoboCup domain where
it is possible to get some human demonstration data but it is hard to explicitly
characterize the implicit constraints that define the task. With this in mind,
in this paper, we present an approach to motion synthesis that brings together
two related but distinct algorithmic threads: sampling-based motion planning
and manifold learning. We begin with a small set of example trajectories that
are representative of the intrinsic constraints that define a task, e.g., bipedal
walking. These trajectories are really just samples drawn from a set of possible
trajectories that define a sub-manifold in the configuration space of the robot -
indirectly defined by task space, joint space and kinodynamic constraints. We use
a manifold learning algorithm to approximate this sub-manifold. In particular,
our construction enables us to specify projections onto the manifold and also
to compute geodesics. Then, as the robot is presented with different goals that
appear in the course of its operation, we use a sampling based motion planning
algorithm – Rapidly-exploring Random Trees (RRT) [1] – to synthesise novel
trajectories that are restricted to lie on this sub-manifold.

A primary benefit of focussing exploration in this way is that it enables us
to bring into the planning process constraints that are only known in terms of
observed data from known good behaviours (i.e., not explicitly modelled). This
makes our approach a data–driven one, wherein the constraint is inferred from
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observed data and used in the planning process in the form of a sub–manifold
onto which exploration is restricted. The learned sub-manifold provides a basis
for higher level deliberation in a layered architecture. So, in addition to com-
putational savings arising from focussed search, the learned model serves as an
abstraction that succinctly encodes the variety of ways in which the underlying
task may be performed - enabling different motion synthesis strategies.

The main contribution of this paper is the manifold-RRT algorithm, a novel
extension to the RRT, which incorporates the focussed sampling idea mentioned
above through a data-driven manifold learning algorithm. This enables us to
synthesise high quality trajectories for bipedal robotic tasks such that the ex-
ploration is focussed to the neighbourhood of demonstrated behaviours. We first
provide an overview of the motion planning and manifold learning algorithms as
they relate to this work. Then, we describe the mRRT algorithm which combines
the benefits of these two approaches. We demonstrate the applicability of this
idea through experimental results with a simulated version of the KHR-2HV
humanoid robot. Finally, we conclude with a brief discussion of how this specific
result may be applied in more general settings involving humanoid and other
robot behaviours.

2 Related Work

In the context of biological behaviours, it has been argued [2] and observed
[2,3] that the curse of dimensionality is best overcome by utilising synergies and
coordination strategies that enforce a restriction of the synthesised motions to
low-dimensional spaces. Robotics [4,5,6] and graphics [7] researchers have utilised
this fact to devise efficient motion synthesis strategies. Our interest is in incor-
porating this feature directly into sampling based motion planning. Some recent
work [8,9,10] comes close to this issue by considering how task space constraints,
e.g., end-effector constraints, can be used to structure search in configuration
space with local Jacobian mappings. In other related work, e.g. references [11,12],
the goal is to edit a statically stable trajectory, discovered by a sampling based
motion planner, in a post-processing step to make the resulting trajectory dy-
namically realisable. However, the low-dimensional structure of the task is not
directly leveraged in on-line planning. Computer animation researchers have ar-
rived at closely related insights in developing structures such as motion-motif
graphs [13] which try to abstract families of related trajectories into symbolic
nodes so that on-line search is made efficient. However, in that work, the issue
of task constraints is not given as much importance as in robotics and the focus
is really on efficiently compressing a motion capture database.

3 Background

3.1 Rapidly Exploring Random Trees

Sampling-based motion planning algorithms are based on the idea of approxi-
mating the free portion of the configuration space by a suitable random structure
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that enables efficient computation and fast exploration. The RRT [14] is a re-
markably simple yet effective algorithm for planning a path between two points
in configuration space.

In the algorithm, one adopts a simple set characterisation of the configuration
space, which is the union of the free space, Qfree and the obstacle space Qobs.
Sampled configurations, q, are drawn from Qfull, Qfull = Qfree ∪ Qobs. Qfull

can be the configuration space or the phase space for the system, or even just
any composition of state variables within q ∈ R

D, D being the dimensionality
of the problem space.

We root a tree, T , at the given starting point, qinit and grow it by iterating the
following process. Pick a random point qrand ∈ Qfull and calculate its distance
from each point already in T . Select the closest point, qnear , from T and grow the
tree toward qrand by a step size Δx. Then evaluate if the resulting configuration
qnew = qnear + Δxqrand

belongs to Qfree or Qobs. If the former is true qnew is
added to T , else the sample is discarded. The procedure is repeated until the goal
configuration qgoal is reached, within some tolerance or number of iterations. The
shortest path is then computed on T using a tree search algorithm. Algorithm
2 includes these core RRT (cRRT1) steps and is augmented with the LSML
procedure, to be described.

RRTs quickly branch into unexplored regions of the space and when such
regions become small the algorithm begins to fill in gaps with increasing reso-
lution. This ensures that the planner is probabilistically complete, thus it will
find a path if one exists as the number of samples grows to infinity. However,
when considering complex problems involving humanoids, many finer points need
consideration, including convergence to the goal, stability and realisability con-
strains, space coverage and resolution. For example, as a rule of thumb, in spaces
with D ≥ 8 convergence is typically slow. It has been shown that including a
bias favouring the goal greatly increases the convergence speed as it steers the
exploration [1].

In general, success of RRTs depends on the metric that is defined over the
space to be explored. Traditionally a metric of the form:

d(q, q′) =
n∑

i=1

wi ‖qi − q′i‖ ,

is used where the weights wi denote the importance of each Degree of Freedom
(DoF). These weights are often empirically chosen based on trial and error but
as the dimensionality grows, and in nonlinear systems, this becomes difficult
from intuition alone, so, there is a need for other ways to arrive such metrics.
We argue that learning such a metric in a data-driven fashion is a desirable and
scalable approach.

The second, related, issue that determines success of RRT-based planning is
coverage. Random sampling in high dimensions can be excessively wasteful when
the underlying task has special structure. The key issue is that sampling a high

1 We term cRRT the classic RRT algorithm as described in [1].
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Algorithm 1. Learn Manifold
1: Lsml(tr data, d)
2: Input: kinematic task-relevant data tr data, dimensionality of manifold d
3: Output: manifold M
4: NN ← NN GRAPH(tr data)
5: θ ← OPTIMISE PARAMETERS(tr data,NN) {Model Parameters}
6: M ← MINIMISE MODEL ERROR(θ) {Fit the manifold}
7: Return M

dimensional space densely enough is computationally infeasible. Knowing that
many interesting robotic behaviours are restricted to low-dimensional subspaces
[15,16,2,4,17], due to a variety of reasons including stability and energy con-
straints, joint limits and self-collision constraints, it is desirable to leverage this
to achieve better coverage where it matters.

3.2 Manifold Learning

The machine learning literature includes many examples of dimensionality re-
duction methods used to abstract and/or make problem spaces manageable
[18,19,16]. One of the big benefits of these methods is that they are data-driven
and can be used in a scalable way in novel domains.

In the usual formulation, manifold learning is about finding an embedding or
‘unrolling’ of a nonlinear manifold onto a lower dimensional space while preserv-
ing metric properties such as inter-point distances. Popular examples include
MDS [20], LLE [21] and ISOMAP [22]. However, much of this work has been
focused on summarisation, visualisation or analysis that explains some aspect
of the observed data. Instead, we are more interested in methods that provide
a direct representation of a nonlinear subspace in a way that enables standard
geometric operations needed in motion planning. Such methods should work
with demonstrated motions and provide good interpolation and extrapolation
on the learnt manifold. For this, we choose a recently developed method – Lo-
cally Smooth Manifold Learning [23,24]. LSML explicitly focuses on generalising
to unseen portions of the manifold, which is crucial for use with an exploration
algorithm. The learnt manifold can be used to compute geodesic distances, to
find projections of points on the manifold and to generate novel sample points.
A detailed description of LSML, from [23], follows.

LSML. Given that our D-dimensional data lies on a locally smooth d-
dimensional manifold, where d < D, there exists a continuous bijective map-
ping M that converts low dimensional points, y ∈ R

d, to points, x ∈ R
D, in the

original high dimensional space. The goal is to learn a warping function W that
can take a point on the manifold and compute its neighbouring points on the
manifold, capturing the modes of variation of the data. Thus we can approxi-
mate W by M locally by defining W (x, ε) = M(y + ε) where y = M−1(x) and
ε ∈ R

d. The first order approximation of the above is W (x, ε) ≈ x+H(x)ε where
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each column H.k of H(x) is the partial derivative of M with respect to yk, i.e.
H.k(x) = ∂/∂ykM(y), valid given ε is small enough.

The objective then is to learn the unknown parameterised function Hθ :
R

D → R
D×d, parameterised by a variable θ (e.g. parameters of an RBF-linear

model). For that we first calculate the set of nearest neighbours N i, for each
point xi of the training data. This way, if xj is a neighbour of xi, then there
exists an unknown εij such that W (xi, εij) = xj , or to a good approximation
Hθ(x̄ij)εij ≈ Δi

.j , where Δi
.j can be regarded as the centred estimate of the

directional derivative at x̄ij .
To solve for Hθ we define the error:

err(θ) = min{εij}
∑

i,j∈Ni

∥∥Hθ(x̄ij)εij −Δi
.j

∥∥2

2
,

and minimise for θ with the addition of a regularisation term:

λ
∑ ∥∥εij

∥∥2

2
+ λ

∑ ∥∥∥Hθ(x̄ij)−Hθ(x̄ij′ )
∥∥∥

2

F
,

where x̄ij and x̄ij′ are two neighboring locations, εij and λ are regularisation
terms that enforce the smoothness of the mapping. To solve this, a radial basis
function(RBF)-based linear parametrisation is used, along with an alternating
minimisation procedure (with random restarts to avoid local minima). Pseu-
docode for the method is available in Algorithm 1.

Projection. The projection of a point x on a learnt manifold M cannot be
computed in closed form. Instead a gradient descent approach is utilised in find-
ing a new point x′ on M that minimises the distance ‖x− x′‖22. Since Hθ is
defined over the whole R

D we calculate the orthonormalised tangent space at
x′, H ′ ≡ orth(Hθ(x′)), and H ′H ′T the corresponding projection matrix. We fol-
low the gradient to the local minima on the manifold, using the update rule for
x′: x′ ← x′ + αH ′H ′T (x − x′), with α being the step size. To find the closest
projection we initially set x′ to be the nearest point in the training data.

Geodesic distance. To compute the geodesic distance between two points, x
and x′, on a manifold we use an active contour model, also known as a snake
[25]. A snake defines a discretised path between x and x′ and its length is being
minimised by gradient descent. The error reflecting the length of the path is given
by: errlen(χ) =

∑m
i=2

∥∥χi − χi−1
∥∥2

2
, where the χ’s are the linearly interpolated

-manifold respecting- points between the fixed start and end points. The update
rule for each χi is very similar to the update rule used for projection.

4 The Manifold-RRT Algorithm

Our algorithm is a variant of the conventional RRT, augmented with the mani-
fold learning operation (Algorithm 1). This hybrid procedure is described in Al-
gorithm 2. We use the learnt manifold, M , to compute distances between points
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Algorithm 2. Manifold Path Planning
1: mRrt(qinit, qgoal, M)
2: Input: start point qinit, goal point qgoal, learnt manifold M
3: Output: path in configuration space p
4: T .add(qinit) {Initialize tree T}
5: for i = 0 to k do
6: qrand ← RANDOM POINT
7: qproj ← PROJECT(qrand, M)
8: qnear ← GEODESIC D(qproj, T , M)
9: qnew ← STEP(qnear , qproj , dx) {Construct Snake}

10: valid← EVALUATE(qnew)
11: if valid == true then
12: T .add(qnew)
13: dist← GEODESIC D(qnew , qgoal, M)
14: if dist ≤ tolerance then
15: break
16: end if
17: end if
18: end for
19: p← SHORTEST PATH(T .first,T .last)
20: Return p

in configuration space. The metric is the geodesic distance directly learnt from
the training data. We utilise the geodesic distance to evaluate nearest neighbour
relations and find qnear . This is used to decide which node of the tree will be
subsequently grown. Moreover we use the learnt manifold to project uniform
random samples in configuration space, qrand, onto the manifold - focusing the
planner to explore a task-relevant subspace.

Growing the tree T involves this projection, qproj , of the random sample and
the computation of a snake (Section 3.2) from the nearest neighbour on the
graph to the new point, qnew . The interpolated points on the manifold that
compose the snake are then examined and the geodesic distance, dist, from the
starting point is computed. When the geodesic distance reaches the desired step
size dx we set the via-point as the end of the step and evaluate the resulting
path in simulation.

Next, the geodesic distance from the new vertex to the goal-point is computed.
If the distance is lower than a tolerance threshold, the exploration stops. A
shortest path from the start-point to the last vertex added is computed using a
standard tree search algorithm. The resulting path, p, is the motion plan.

5 Experimental Setup

We present experiments with a simulated humanoid robot, KHR-2HV (Figure
2). This involves no explicit analytic model of the humanoid robot dynamics.
Instead, we treat the simulated robot as an incrementally evaluable black-box.
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Fig. 2. The KHR-2HV Humanoid robot and the corresponding 17 degrees of freedom

So, although we present the results from simulation, the procedure can be iden-
tically applied to a physical robot as well. In particular, even though we search
a region in configuration space, the intrinsic dynamics of the nonlinear high di-
mensional system are taken into consideration implicitly (of course, subject to
the restriction of what is expressible in the configuration space).

Our simulation is in Webots [26], a commercial physically realistic modelling
and simulation ODE-based environment. In Webots we use an accurate model
of the Kondo KHR-2HV humanoid robot, where motion is performed using P-
controllers that closely simulate the characteristics of the real robot servos. A
controller has been implemented in C that handles the communication between
Webots and Matlab and exposes the full functionality of the robot model. Both
cRRT and mRRT algorithms are implemented in Matlab and communicate di-
rectly with the simulator for the evaluation of configurations. LSML is imple-
mented in Matlab, using Piotr Dollar’s LSML code 2.

5.1 Task

We have experimented with a number of bipedal tasks. However, we include
nothing in our experiment that is specific to these particular tasks, thus the
same procedure is applicable to other bipedal tasks as well. We compare the
classical RRT and mRRT on the same tasks of forward and backward stepping
and kicking. For the purposes of planning, we consider all the leg and hip DoFs
of the humanoid, resulting in a 10-dimensional configuration space.

We begin with a single example – a hand-crafted trajectory, from stance to
double support for stepping and to midair reach for kicking. We sample the
training data in simulation from the KHR-2HV humanoid and we use a 5 mil-
lisecond sampling rate that is equal to the physical simulation time step. The
resulting motions are 116, 98 and 96 points long for step, kick and backstep
2 Available at: http://vision.ucsd.edu/∼pdollar/
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accordingly. The start and end points are chosen equally as the initial and goal
points of both compared algorithms. In order to add variability to the learning
step of mRRT we further use 2 perturbed instances of the previous motions.
These trajectories are generated by random normal sampling in the vicinity of
the training data and subsequent stability evaluation in simulation. Furthermore
the sequential nature of the training data ensures that the learnt sub–space is a
single manifold and that is not disconnected.

5.2 Evaluation of Samples

In both cases, new samples are evaluated in simulation. It is worth noting that
we do not have an explicit model of the robot’s kinematics or dynamics. So,
samples are evaluated in a dynamic fashion that ensures their suitability. Both
in cRRT and mRRT, the nearest neighbour of every new sample is computed
on each iteration of the exploration cycle. The humanoid’s servos are set at
the appropriate positions and its global position and rotation is set accordingly.
The robot is then commanded to perform the motion that reaches the new
configuration point according to the servos’ P-controllers. We utilise feedback
from the gyroscope and the accelerometers to evaluate the stability and stance.
Furthermore we employ two foot force sensors to distinguish between single and
double support configurations.

5.3 Other Parameters

We have used the average geodesic distance between data points in the training
set to set the step length in both algorithms. Such a choice is well suited to
the task at hand and was made for comparability in evaluation. Note that this
choice greatly favours cRRT as the metric used is now ‘informed ’ in a systematic
manner, in contrast to the often ad-hoc RRT setting. We have set a bias of
0.1 towards the goal point in order to boost convergence. The default LSML
parameterisation has been used with no effort at special optimisation as errors
have been adequately small. The actual time for learning a manifold depends on
the amount of training data and for our experiments required less than a minute
in all cases.

6 Results

We compare the performance of cRRT and mRRT with a number of different
metrics. Each trial has been repeated 10 times for both algorithms and all re-
ported results are averaged over the number of trials. Examples of a resulting
paths discovered by mRRT are depicted in Figure 3.

The evaluation metrics are quite intuitive. In particular, we note the following.
Average path length corresponds to the number of points that are traversed
from the initial configuration in order to reach the goal configuration. Number
of samples denote the total explorative samples needed until the goal is reached.
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Fig. 3. Paths discovered by mRRT for left step forward (top row), left step backward
(middle row) and left leg kick (bottom row)

Table 1. Results averaged over 10 trials for step forward, kick and step backward

Task step kick backstep

cRRT mRRT cRRT mRRT cRRT mRRT

Average path length 40.9 38 52.5 49.4 47.2 37.5

Average number of samples 268.63 199.2 291 249.3 293.4 189.8

Average tree size 127.7 127 140.3 137.7 120.7 108.4

Average number of invalid samples 140.6 74.4 150.7 111.6 172.7 81.4

Smoothness {nRMSE} 0.0051 0.0049 0.0055 0.0041 0.0046 0.0043

Tree size is the number of vertices that the resulting tree consists of. Invalid
samples are evaluated points that do not satisfy dynamic stability or collision
constraints. Smoothness is defined as the average normalised Root Mean Square
Error (nRMSE) with respect to a fitted cubic polynomial at each joint motion
for each resulting plan path.

Our experimental results show that mRRT, in all trials, discovers a solution
with much fewer invalid samples. These are the random configurations that fail
in the evaluation step. On average mRRT explores only half as many ‘bad’
samples as cRRT (57.6%). This translates to an average decrease of 25.2% in
overall planning steps for the specific tasks. More importantly, as tasks become
more complex in terms of dynamical constraints, this ensures that exploration
is accordingly useful.

On average, mRRT discovers shorter paths than cRRT and requires much
fewer samples. For all tasks, the average size of trees is approximately equal
and both algorithms find smooth paths. The results are summarised in Table
1. In general, we expect that the above mentioned differences would be more
pronounced as the tasks are more spatio-temporally extended and dynamical
realisability constraints become more severe.
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7 Conclusion

We have demonstrated an approach to sampling based motion planning that
utilizes demonstrated examples to glean information regarding task-specific con-
straints. This data could come from motion capture or perhaps even just a few
hand crafted partial solutions. Our approach is to augment a sampling-based
motion planning algorithm with a manifold learning procedure to provide task-
specific metrics and a way to synthesize motion as geodesics. We have shown
that this yields a marked improvement in exploration efficiency with respect to
a standard RRT based planner, due to the fact that the learnt metric focusses
exploration better than other forms of random sampling in a larger space. In
addition, and very importantly, we note that this procedure yields an efficient
encoding of the many different ways to perform a particular task (e.g., quan-
titatively different kicking trajectories), which is crucial for the construction of
multi-level motion synthesis strategies.

We have shown examples of bipedal tasks in simulation and our current work
involves porting the algorithm to a physical robot platform. Also, in future work,
we would like to augment the space with velocity and acceleration information
which will be required to encode many challenging dynamic behaviours including
jumping and running. Finally, our long term goal is to use this procedure as a way
to seed the learning of a layered architecture for control, planning and reasoning.
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