
Geodesic trajectory generation on learnt skill manifolds

Ioannis Havoutis Subramanian Ramamoorthy

Institute of Perception, Action and Behaviour

School of Informatics, University of Edinburgh, Edinburgh, EH8 9AB, UK

I.Havoutis@sms.ed.ac.uk, S.Ramamoorthy@ed.ac.uk

Abstract— Humanoid robots are appealing due to their in-
herent dexterity. However, these potential benefits may only
be realized if the corresponding motion synthesis procedure
is suitably flexible. This paper presents a flexible trajectory
generation algorithm that utilizes a geometric representation of
humanoid skills (e.g., walking) - in the form of skill manifolds.
These manifolds are learnt from demonstration data that may
be obtained from off-line optimization algorithms (or a human
expert). We demonstrate that this model may be used to produce
approximately optimal motion plans as geodesics over the
manifold and that this allows us to effectively generalize from
a limited training set. We demonstrate the effectiveness of our
approach on a simulated 3-link planar arm, and then the more
challenging example of a physical 19-DoF humanoid robot. We
show that our algorithm produces a close approximation of the
much more computationally intensive optimization procedure
used to generate the data. This allows us to present experimental
results for fast motion planning on a realistic – variable step
length, width and height – walking task on a humanoid robot.

I. INTRODUCTION

In recent years, humanoid robot platforms have been

receiving increasing attention due to their inherent dexterity

and great flexibility. Correspondingly, this highlights the

need for general purpose motion planners. Off the shelf

solutions for humanoid robot behaviours are often restricted

to a limited motion vocabulary that does not exploit the full

capacity of the system. For instance, predesigned motions

in many platforms are not parameterized in a flexible way

(e.g., allowing full control over step length, width and

height) and impose a limited discretization on the reachable

space of the robot. There is a pressing need for efficient

algorithms that can overcome these limitations and achieve

a relatively rich set of within-skill variations in a realistic and

practically implementable setting. Given such algorithms,

one could then treat the skill as a component in a higher

level discrete search [1]. Standard approaches that do allow

for such flexibility tend to be computationally expensive,

e.g., requiring high dimensional numerical optimization or

c-space search. We need a more efficient alternative.

In realistic domains, e.g. RoboCup, where restrictions to

variations on a skill would adversely impact higher level

planning goals, one seeks a compact representation of the

family of possible motions of a particular skill. This means

that one would like to be able to learn and compactly

represent the whole continuum of possible solutions for a

particular task. In a machine learning setting, where one is

acquiring a skill from demonstration, this raises the need

for good generalization to solutions that possibly lie beyond

the region of support of the original demonstration. Many

−10 −5 0 5
−4−2024

0

5

10

15

20

25

30

35

xz

y

(a) Model (b) Robot

Fig. 1. The KHR-1HV humanoid robot used, (a) skeleton model and (b)
physical robot.

existing data-driven approaches to humanoid motion synthe-

sis are often limited in this respect - either they focus on

interpolation within narrow regions near dense demonstrated

samples or learning is posed as a problem of parameter

tuning of an externally imposed path planning algorithm

that may not naturally exploit the underlying structure of the

space of solutions. We aim to make progress in this setting,

by developing an algorithm that has better generalization

properties and also a more natural and tighter integration

between learning and planning.

In this setting, one way to obtain training data could

be from demonstrated trajectories by an expert [2]. In this

case notions such as optimality are intrinsic to the expert’s

demonstrations and can be based on a variety of (some-

times unmodelled) factors [3]. In order to have a better

understanding of the behaviour of the algorithm, in this

paper, we utilize demonstration data that is obtained from

another computational solution which involves numerical

optimization. These solutions are computationally expensive

and not feasible for online operation. However, they can

serve the same role as demonstration data. With this, we have

a clear idea of the specific optimality properties of each task

being considered, and a measure of algorithm performance

against reasonable ‘ground truth’.

As known from the study of biological behaviours, natural

systems utilize synergies and coordination strategies that

allow for efficient locomotion and fast planning. Biological

strategies usually have a musculoskeletal basis that is inher-

2010 IEEE International Conference on Robotics and Automation
Anchorage Convention District
May 3-8, 2010, Anchorage, Alaska, USA

978-1-4244-5040-4/10/$26.00 ©2010 IEEE 2946

ent to the dynamics of the system, that restricts movement

to a subset of all possible solutions. In a robotics context,

system and (possibly artificial) task constraints can serve the

same purpose. Robotics [4], [5] and graphics [6] researchers

have utilized this fact to devise efficient motion synthesis

strategies. Some recent works [7], [8], [9] also address this

issue by considering how task space constraints, e.g., end-

effector constraints, can be used to structure planning in

configuration space with local Jacobian mappings. However

the low-dimensional nature of the solutions may not always

be taken into account explicitly.

The machine learning literature includes many examples

of dimensionality reduction methods used to abstract and/or

make problem spaces manageable. For example Chalodhorn

et al. [10] use a low-dimensional sensory-motor mapping to

optimize demonstrated motions over the robot’s dynamics.

Wang et al. [11] introduced the GPDM, a Gaussian processes

based dimensionality reduction with a dynamical model of

the evolution of the state, that can learn models of human

kinematic trajectories. In the same spirit, Bitzer et al. [12] use

a Gaussian Process-based nonlinear dimensionality reduction

technique to arrive at an underlying model of demonstrated

data, while using a parameterized path generation method

over the learnt representation to generate novel movements.

Our goal is to learn a geometric structure, i.e., a skill

manifold, that naturally and directly specifies both the low

dimensional structure and dynamics on this subspace (which,

in other works, one often externally and rather arbitrarily

imposed).So, if one begins with a set of motion examples

from a specific class, e.g., due to a path optimization or

redundancy resolution principle or even a more complex

kinodynamic constraint, then one seeks a representation that

intrinsically captures both the restriction of states to a low-

dimensional space and the evolution of the trajectories in that

space. We achieve this by representing motions in terms of

skill manifolds (learnt from data) where the tangent spaces

are suitably defined so that geodesics correspond exactly to

the execution of the desired motion.

II. MANIFOLD LEARNING

In this section we present the nonlinear manifold learning

method that form the basis of our method. Our algorithm

is a modification of Locally Smooth Manifold Learning by

Dollar et al. [13], which we have adapted with robot motion-

specific issues in mind. In particular we have replaced

the neighborhood graph creation process with a procedure

that considers task space distances as well as ensures that

temporal neighborhood relations along the demonstrated

trajectories are respected.

In the usual formulation, manifold learning is aimed at

finding an embedding or ‘unrolling’ of a nonlinear manifold

onto a lower dimensional space while preserving metric

properties such as inter-point distances. Popular examples

include MDS [14], LLE [15] and ISOMAP [16]. However,

much of this work has been focused on summarization,

visualization or analysis that explains some aspect of the

observed data.

On the other hand, we are interested in preserving proper-

ties of trajectories in the data set.So, formally our goal is to

learn a model of the tangent space of the low-dimensional

nonlinear manifold, conditioned on the adjacency relations of

the high dimensional data. The learnt manifold can be used to

compute geodesic distances, to find projections of points on

the manifold and to directly generate geodesic paths between

points.

A. Learning the model

Given that our D-dimensional data lies on a locally smooth

d-dimensional manifold in D-dimensional space, where d <

D, there exists a continuous bijective mapping M that

converts low dimensional points y ∈ R
d from the manifold,

to points x ∈ R
D of the high dimensional space,

x = M(y).

The goal is to learn a mapping from a point on the manifold

to its tangent basis H(x),

H : x ∈ R
D 7→

[

∂

∂y1

M(y) · · ·
∂

∂yd

M(y)

]

∈ R
D×d

where each column of H(x) is a basis vector of the tangent

space of the manifold at y, i.e. the partial derivative of M
with respect to y.

Learning a model of the mapping with some parametriza-

tion θ, i.e. Hθ, is done as follows. Given two neighboring

points on the manifold, xi and xj 1, the difference between

these points, ∆i
.j , should be a linear combination of the

tangent vectors at that point on the manifold, scaled by an

unknown alignment factor. Taking ∆i
.j to be the centered

estimate of the directional derivative at x̄ij and ǫij to be the

unknown alignment factor, we have

Hθ(x̄
ij)ǫij ≈ ∆i

.j ,

that holds given ǫ is small enough and the manifold can be

locally approximated with a quadratic form. To learn Hθ we

define the error function:

err(θ) = min
{ǫij}

∑

i,j∈Ni

∥

∥Hθ(x̄
ij)ǫij − ∆i

.j

∥

∥

2

2
,

where N i is the set of neighbors of xi. This minimization

problem for θ is solved with a regularization term that

ensures that the ǫ’s do not get too large, that the tangents

do not get too small and that neighboring tangent basis are

aligned. For a precise model of the tangent space one would

need to compute the tangent basis for each point, Hθ(x̄
ij),

which can be considered as a regression over the evidence

(training data), and compute the alignment factors, ǫij , for all

neighboring points. Solving for the bases and their alignment

simultaneously is complex, but if either one is kept constant,

solving for the remaining variables becomes a tractable least

squares problem.

Modeling Hθ is done with a linear model of radial basis

functions (RBF’s) with features over the evidence [14], where

1Where superscript i and j are used for indexing.

2947

−0.5 0 0.5 1

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

x

y

(a) Task space

−0.5 0 0.5 1

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

x

y

(b) Neighborhood graph

0
0.2

0.4
0.6

0.8
1

0.8

1

1.2

1.40.6

0.8

1

1.2

q
2

q
1

q
3

(c) Joint space

0
0.2

0.4
0.6

0.8
1

0.8

1

1.2

1.40.6

0.8

1

1.2

q
2

q
1

q
3

(d) Tangent space

Fig. 2. Learning the optimality manifold of a 3-link arm. (a) The planar
task space of the arm and subsampled points (blue) used for leaning. (b)
The neighborhood graph used for learning a manifold. (c) The optimality
manifold that we wish to learn. Light gray points are not used for learning
but are plotted to give a better estimate of the geometry of the manifold.
Note that the manifold is not planar but twist and turns as we move down
the q3 axis. (d) The learnt tangent space model. Blue and green arrows are
basis vectors evaluated at points that correspond to the original grid.

the number of basis functions, f , acts as parameter that

can control the smoothness of the estimated mapping. More

nonsmooth nonlinear manifolds with abrupt changes, would

typically require more basis functions to ensure a tight

local fit, though the generalization ability may be weakened.

Optimizing the model requires alternating between the two

least squares problems described above, until a local minima

has been reached. Typically more than one random restart is

performed to avoid local minima.

B. Optimal geodesic paths

By approximating the tangent space of the manifold, we

gain access to a variety of geometric operations. Central to

our robotics aims is the ability to compute paths through

configuration space that lie on the low dimensional manifold.

In this spirit, we now change our notation of points from x

to q, to denote poses a robot can achieve in a configuration

space.

Formally, our goal is to find the shortest path between two

prespecified poses q1, qn ∈ R
D, D being the dimensionality

of the configuration space, that respects the geometry of the

learnt manifold. In a robotics context, being on the manifold

essentially means that the constraints (e.g., optimality w.r.t. a

particular task-specific cost) inherent in the training data are

respected. In practice we, discretize our path into a set of n

via points, q = q1, . . . , qn, with the q1 and qn being fixed,

and we follow a combination of gradient descent steps to

minimize the length of the path while not leaving the support

of the manifold.

The initial estimate of the shortest path is computed by

interpolating between q1 and qn, while following the geom-

etry of the manifold, until the distance between consecutive

points is acceptable. Since we have learnt the tangent space

of the manifold we can find a minimum energy solution that

follows the orthonormal (to the manifold) component of the

gradient of

errM(q) = min
{ǫij}

∑

i,j∈Ni

∥

∥Hθ(q̄
ij)ǫij − (qi − qj)

∥

∥

2

2
,

that essentially makes the qi’s “stick” to the learnt manifold

by iteratively moving them to points where neighboring

(consecutive) bases are aligned. Next we apply another

gradient descent optimization by following the parallel (to

the manifold) component of

errlength(q) =

n
∑

i=2

∥

∥qi − qi−1
∥

∥

2

2
,

that iteratively minimizes the length of the path without

leaving the support of the learnt manifold, while keeping

the endpoints fixed.

The next sections present two examples of our method.

The first example presents experiments on a simulated 3-link

arm where both the manifold and the learnt model can be

visualized and are representative of the core ideas behind this

work. For the second example we use a physical humanoid

robot, with which we demonstrate how our method scales to

more complex systems and more challenging tasks.

III. EXPERIMENTS ON A ROBOTIC ARM

Our first set of experiments were designed to elucidate the

basic concepts underlying our approach. We have chosen a

3-link planar arm where we can explicitly visualize both

the configuration space and the optimization manifold. The

arm is a series of three rigid links of unit length that are

coupled with hinge joints, producing a redundant system with

3 degrees of freedom (DoFs) that is constrained to move on

a 2 dimensional plane (task space).

A. Training data

We start with a 21 × 31 grid in task space and compute

the joint positions for each goal point with an iterative

optimization procedure detailed below. We subsample 100

grid points to get a random permutation for learning, as in

Fig. 2(a).

The system being redundant, we first have to choose a

redundancy resolution strategy, which implicitly specifies the

manifold that we will subsequently learn. Here, we choose

the joint space configuration, q, that minimizes the distance

to a convenience (robot default or minimum strain) pose, qc.

Formally,

min ‖q − qc‖
2
, subject to f(q) − x = 0,

where f is the forward kinematics and x is the goal endpoint

position on the plane.

The resulting q’s trace a smooth nonlinear manifold in

joint space, depicted in Fig. 2(c). We note that the manifold

does not lie on a plane but on a convex strip that twists

clockwise and tightens as we travel down the q3 axis. Also

different redundancy resolution strategies would produce

2948

−0.5 0 0.5 1

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

x

y

(a) Interpolation

−0.5 0 0.5 1 1.5 2 2.5 3
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

x

y

(b) Extrapolation

(c) Generalization errors (d) Time

Fig. 3. Results of the 3-link arm experiments. Novel task space trajectories
produced with random start and end points where (a) demonstrates gener-
alization within the region of support of the data, while (b) demonstrates
generalization beyond the region of support of the training data. (c) RMSE
error of generated trajectories against ground truth for the two cases. In the
interpolation scenario the error is practically zero (y axis in log-scale). (d)
Absolute planning time for the two cases. Note that in the interpolation case
the length of the paths is consistently low.

different optimality manifolds. We note that, in general, this

kind of information may not be explicitly known (in the case

of human demonstration) or visualizable for more complex

problems.

B. Implementation

The first step in data-driven learning of the desired mani-

fold is to compute the neighborhood graph of the training

data. We evaluate the task space distances to compute

the neighborhood graph with the constraint that the graph

contains a single connected component. In practice we grad-

ually increase the neighborhood distance until all points are

connected, as in Fig. 2(b).

The tangent space that we wish to learn is inherently two

dimensional. We learn a model of Hθ with 10 RBF’s and

100 points, the blue points in Fig. 2(c). We can subsequently

evaluate Hθ at any point in our joint space. Fig. 2(d) shows

the tangent bases evaluated at every point of the previously

generated grid. Note that the basis vectors are aligned and

vary smoothly, i.e. we obtain a good generalization within

the region of support of the data.

C. Results

For measuring the goodness of our learnt manifold, we use

two metrics. Central to our aims is the generalization ability

of the model. Thus we quantitatively evaluate the error of

planned motions against the poses that the original optimiza-

tion procedure would produce. We distinguish between two

scenarios for our motion planning. The first evaluates the

model’s interpolation ability, generating trajectories that in

task space lie within the grid from which 100 points have

been sampled for learning. The second case evaluates the

extrapolation ability of the model by generating trajectories,

the endpoints of which lie outside the original grid. In both

cases start and endpoint positions in task space were random,

while results are averaged over 10 trials for each scenario.

We create 50 optimal geodesic paths, with random start

and end points for each case, with the method detailed in

section II-B. Samples of such paths for both generalization

cases are depicted in Fig. 3(a) and (b) (grid points in light

gray for comparison).

We then collect all the intermediate points and compute

the optimal solutions of their forward kinematics with the

redundancy resolution algorithm detailed in section III-A, as

ground truth. We compute the RMSE, for each trial and for

each case, between ground truth and prediction of model, for

a total of 10 trials.

The averaged errors are depicted in Fig. 3(c). Note that

the RMSE axis is in log-scale while the difference of the two

bars is of 2 orders of magnitude. To be precise the average

RMSE for paths generated within the region of support of

the data is 1.8935×10−4 ±3.6013×10−5(practically zero),

while beyond the support of the data the average RMSE is

6.84×10−2±2.19×10−2. In addition, computing the optimal

geodesic paths takes less time on average (Fig. 3(d) in both

cases).

IV. EXPERIMENTS ON A HUMANOID ROBOT

The three-link arm experiments are useful for demon-

strating the working of the manifold learning and optimal

geodesic path planning algorithm. We now move to a more

complex system. In this setting, the skill manifold idea is

more intuitively understood. We use the KHR-1HV (Fig.

1(b)), a “KidSized” humanoid robot2 that stands approx-

imately 35cm tall. It consists of 19 digital servo motors

on brackets, in a bipedal-two-armed configuration, with a

control board and a battery pack. The system is unstable as

the center of mass is elevated.

No analytical model of the dynamics of the system is

available to us as. Obtaining such models is labor intensive.

Moreover, even if we were to approximate such a model, it

would have to account for varying model parameters, e.g. the

change in the servos’ behaviour as the battery gets depleted

or the motor temperatures vary. These effects are hard to

estimate, so we prefer to work directly from experimental

data.

We focus on the task of walking, with the aim of generat-

ing a motion synthesis strategy that allows for full coverage

of a reasonably large interval in step length. We begin with a

redundancy resolution strategy that would yield training data

and ground truth for our subsequent comparisons.

A. Training data

We frame the redundancy resolution strategy as an uncon-

strained nonlinear optimization problem. Algorithmically, we

use a Quasi-Newton approach with a cubic line search pro-

cedure, based on the BFGS formula for iteratively updating

2According to the RoboCup Humanoid League size classification.

2949

−10

−5

0

5

−5
0

5

0

2

4

xz

y

(a) Right steps

−5

0

5

10

−5
0

5

0

2

4

xz

y

(b) Left steps

−10

−5

0

5

−5
0

5

0

2

4

xz

y

(c) Right neighborhood graph

−5

0

5

10

−5
0

5

0

2

4

xz
y

(d) Left neighborhood graph

Fig. 4. Task space representation of the training data through forward
kinematics. Random start and end point leg swing trajectories of the left (a)
and right (b) legs. (c) and (d) the neighborhood graphs that result from the
task space distances between demonstrated data (units in cm). This provides
the task-specific distance metric for the high dimensional joint-space. Note
that depicted here are only feet midpoint positions while the datasets consist
of the joint space points that are 19-dimensional.

the estimate of the Hessian of the objective (cost) function

[17]. Formally, the optimization problem is of the form

min
q

J (q), subject to f(q) − x = 0,

where J is the cost function, f is the forward kinematics

and x is a goal task space position. The cost function is a

mixture of task constraints and stability constraints. The cost

function evaluates:

• the distance of the midpoint of the swing foot to the

desired goal

• the alignment of the swing foot with the x and y versors,

to keep the foot flat

• the horizontal distance of the position of the pelvis to

the desired pelvic position, to manipulate the center of

mass of the humanoid

• the alignment of the waist of the robot with the z versor,

to keep the humanoid, from the hips up, in an upright

position

The optimization initialization pose is one where the hu-

manoid stands upright with the knee joints slightly bent.

To generate a walking trajectory we start with the desired

task space path of the swing leg and the position of the pelvis,

and discretize to 20 waypoints. The swing foot trajectories

are straight lines from start to goal points while the height of

the foot is regulated with a sinusoid, scaled to a prespecified

height. In practice we set the position of the pelvis to be

over the support foot and perform a double support weight

shift step once the swing leg has reached the goal position.

Last we run the optimization procedure detailed earlier, and

get the joint space trajectory of the leg swing and the weight

swift phases for each complete task space step path.

The optimization results are approximately constant speed

quasi-static trajectories, in the sense that inertial effects are

negligible. We collected 20 full body joint space trajectories

for stepping with the right leg and the same amount for

stepping with the left leg. Start and goal points of every step

have been randomized within a reasonable reaching distance.

Figure 4(a) and 4(b) show the task space trajectories of

each swing leg by running the datasets through the forward

kinematics (the support foot is in light gray for comparison).

B. Implementation

Compared to our previous simpler example, this is higher

dimensional space and sampling is necessarily somewhat

sparse. Of the 19 DoFs of the robot we used the 12 DoFs

of legs and hips and kept the remaining arm joints at a

constant pose. Furthermore we separated each footstep to a

swing phase and a weight shift phase. This way we divided

the learning into two components, leg swing manifold and

support weight shift manifold, as the measure of optimality

is essentially different for each phase.

We begin with the same neighborhood graph computation

procedure where we gradually increase our neighborhood

distance until the graph is not disconnected (Fig 4(d) and

4(c)). We set the dimensionality of the manifolds to be 3,

corresponding to the natural task space of the robot (see

section V). In all learnt manifolds we used models with 20

RBF’s and 400 data points that belong to 20 random task

space trajectories as described in the previous section.

C. Results

The learnt manifolds are able to produce smooth walking

trajectories that satisfy the optimization criteria used to

produce the training data. Specifically, the average RMSE

(degrees) of the leg swing manifold for the ground truth

was as low as 0.12 while the average RMSE of the weight

shift manifold ranged on average near 0.06 (Fig. 5(c)). This

implies that the geometry of the step manifold is more

complex and some of its features might be smoothed over

by the RBF model. Nonetheless the procedure was able to

produce stable walking in the continuum of the reaching

space of the robot as depicted in Fig. 5(a) and 5(b) for right

and left swings accordingly.

One point to note is that the shape of the trajectories in

task space is qualitatively different than the training data.

This suggests that the learnt manifold indeed traces the true

underlying geometry that the optimization procedure sculpts

in the robot’s joint space. In contrast the training data has

been generated on a point by point basis, while the shape

of the trajectories in the task space (sinusoid) has been

artificially imposed, regardless of the intrinsic structure of the

optimality surface. The geodesic paths that are generated are

optimal with respect to the manifold’s geometry and traverse

the configuration space smoothly.

The absolute time needed to generate an optimal geodesic

path on the pair of manifolds (swing leg and weight shift)

from random start to random end points was approximately

1.5552±0.4785 seconds (in a standard, not particularly fine-

tuned, numerical implementation of the algorithm) whereas

generating a trajectory with the optimization procedure, de-

scribed in section IV-A required approximately two minutes

on average. This is a significant decrease in absolute planning

2950

−5

0

5

10

−5
0

5

0

2

4

x
z

y

(a) Generated left steps

−10

−5

0
−5

0
5

0

2

4

xz

y

(b) Generated right steps

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

R
M

S
E

Step error

Weight shift error

(c) Error

10
0

10
1

10
2

10
3

T
im

e
 (

s
e

c
)

Optimal geodesic paths

Numerical optimization

(d) Absolute time

−10
−5

0
5

0
10

20
30

40

0

5

10

15

20

25

30

35

xz

y

(e) Generated random walk

Fig. 5. Experimental results with the humanoid robot. Random start and
end point trajectories for left (b) and right (b) leg swings that have been
generated from our learnt manifold, via geodesic path optimization (units
in cm). (c) RMSE (degrees) of generated data against ground truth. (d)
absolute time needed for planning and optimization with our method and
the nonlinear optimization method (y axis in logscale) described in the text
(section IV-A). (e) Random walk generated by geodesic path optimization
on the learnt manifolds for randomized task-space goals. Snapshots of the
robot executing the motion in Fig. 6, see also accompanying video.

time, which makes it possible to deploy this algorithm in

realistic application scenarios (e.g. RoboCup).

A randomized walk sequence entirely generated with our

method is depicted in Fig. 5(e). Notice that the step lengths

are varying and the step points are variable as well with

respect to the x axis. Snapshots of this walk executed by

the robot are shown in Fig. 6. Also see the video clip

accompanying this paper.

V. DISCUSSION

We have demonstrated how a machine learning technique

for approximating a low-dimensional skill manifold may be

tightly integrated with the process of trajectory generation.

One of the important differences between the manifold

learning algorithm as used here, and other versions of such

algorithms coming out of domains such as vision, is that

we utilize task space metrics to shape the geodesic compu-

tations on the (configuration space) manifold, and focus on

preserving properties of the trajectories, and not just a point

set.

In both examples presented, we have chosen d to have

the dimensionality of the system’s task space. The reasoning

behind this choice is that there might be configurations

that are close in joint space but far away in task space.

Since our aim is to learn skill-specific manifolds, this seems

natural.We could have used any d < D, but simpler models

are preferred. Choosing the appropriate dimensionality falls

under the bias-variance trade off, as discussed below.

We now make a few observations regarding limitations

(hence, directions for future improvement) of the algorithm

in its current form. In this work, we do assume that the skills

may be represented by a subspace that is a single connected

component. This is clearly not an issue for the 3-link arm

example. However, in general, this may well be insufficient

as the dimensionality of the system grows. The place where

this plays a role is the neighborhood graph computation

where by connecting two points that should not be connected

we would obtain a skewed model. In practice, suitably dense

sampling, or better still incremental sampling in appropriate

regions, and a bit of algorithmic book keeping, would suffice

to ensure that this aspect of the manifold structure is properly

reflected.

Also, one must keep in mind that the manifold learning

step is performed with an iterative algorithm, much like

Expectation Maximization, that is randomly initialized and

does not always guarantee a global minimum. So, learnt

models may not be unique solutions. This may call for better

model selection procedures - a topic for future development.

The number of RBF basis in our experiments was chosen

empirically, thus is open to further improvement. A high

number of RBF’s would allow the model to capture more

intricate local geometric structure of the manifold, but would

impair its generalization ability. On the other hand a low

number of RBF’s may oversmooth the solution and lose much

of the geometric variation present in the training data.

This is a bias-variance trade-off and could be handled

with a cross-validation procedure. Such choices would need

to be closely related to the geometric complexity of the

manifold that one would like to learn. Also the use of the

centered estimate of the directional derivatives implies that

the expressive ability of the model would not be able to

handle manifolds that cannot be locally approximated with

a quadratic form. In practice highly nonlinear manifolds that

vary wildly or have sudden cutoffs may not be suitable for

learning, without additional treatment.

Finally, we assume that start and end points of each

trajectory are known. For this we have used the redundancy

resolution strategy used in generating the demonstrated data.

There is no implicit mapping of task space goals to config-

uration space poses on the manifold per se, but in principle

once the manifold is learned one can easily search for points

that satisfy task space goals.

VI. CONCLUSIONS AND FUTURE WORK

We have demonstrated how a manifold learning algorithm

can capture the geometric properties of a low dimensional

skill manifold that underlies a high dimensional dataset.

2951

Fig. 6. Stills of the robot executing the planned motion depicted in Fig. 5(e).

We have also shown how this model can be naturally used

to generate joint space trajectories, and how the generated

trajectories reflect the optimality and constraints inherent in

the training data.

We started with an example of a simulated robotic arm

that is suitable for demonstrating the core concepts of our

work and then demonstrated a similar result on a more

interesting humanoid robot behaviour. We have demonstrated

how manifolds of complex numerical optimization solutions

can be learnt from sparse data and how the geometric

structure generalizes within and beyond the support of the

data. Finally, we have shown how such learnt manifolds can

be used to produce novel approximately optimal solutions to

continuous path planning queries in a very efficient and fast

manner.

In future we aim to further extend our method for planning

in the presence of kinodynamic constraints. Also we would

like to add sensory feedback to the planning step as well as

incorporate higher order terms, e.g. velocities and accelera-

tions, in the state space. Our long term goal is to utilize the

manifold learning and planning method as the the core of a

larger system that would be able to learn, plan and execute

motions robustly and in real time.

REFERENCES

[1] J. Chestnutt, M. Lau, K. M. Cheung, J. Kuffner, J. K. Hodgins, and
T. Kanade, “Footstep planning for the honda asimo humanoid,” in
Proceedings of the IEEE International Conference on Robotics and

Automation, April 2005.

[2] S. Schaal, A. Ijspeert, and A. Billard, “Computational approaches to
motor learning by imitation,” Philosophical Transactions: Biological

Sciences, vol. 358, no. 1431, pp. 537–547, 2003.

[3] A. Coates, P. Abbeel, and A. Y. Ng, “Learning for control from
multiple demonstrations,” in ICML ’08: Proceedings of the 25th

international conference on Machine learning. New York, NY, USA:
ACM, 2008, pp. 144–151.

[4] S. Ramamoorthy and B. J. Kuipers, “Trajectory generation for dynamic
bipedal walking through qualitative model based manifold learning,”
IEEE International Conference on Robotics and Automation (ICRA),
pp. 359–366, May 2008.

[5] P. Isto and M. Saha, “A slicing connection strategy for constructing
prms in high-dimensional cspaces,” Robotics and Automation, 2006.

ICRA 2006. Proceedings 2006 IEEE International Conference on, pp.
1249–1254, May 2006.

[6] A. Safonova, J. K. Hodgins, and N. S. Pollard, “Synthesizing phys-
ically realistic human motion in low-dimensional, behavior-specific
spaces,” ACM Trans. Graph., vol. 23, no. 3, pp. 514–521, 2004.

[7] D. Berenson, S. Srinivasa, D. Ferguson, and J. Kuffner, “Manipulation
planning on constraint manifolds,” in IEEE International Conference

on Robotics and Automation (ICRA ’09), May 2009.
[8] M. Stilman, “Task constrained motion planning in robot joint space,”

Intelligent Robots and Systems, 2007. IROS 2007. IEEE/RSJ Interna-

tional Conference on, pp. 3074–3081, 29 2007-Nov. 2 2007.
[9] T. Bretl, S. Lall, J.-C. Latombe, and S. Rock, “Multi-step motion

planning for free-climbing robots,” in in WAFR, 2004, pp. 1–16.
[10] R. Chalodhorn, D. Grimes, G. Maganis, R. Rao, and M. Asada,

“Learning humanoid motion dynamics through sensory-motor map-
ping in reduced dimensional spaces,” in Robotics and Automation,

2006. ICRA 2006. Proceedings 2006 IEEE International Conference

on, May 2006, pp. 3693–3698.
[11] J. M. Wang, D. J. Fleet, and A. Hertzmann, “Gaussian process

dynamical models for human motion,” IEEE Trans. Pattern Anal.

Mach. Intell., vol. 30, no. 2, pp. 283–298, 2008.
[12] S. Bitzer, I. Havoutis, and S. Vijayakumar, “Synthesising novel move-

ments through latent space modulation of scalable control policies,”
in Lecture Notes in Computer Science. Springer Berlin / Heidelberg,
2008, pp. 199–209.

[13] P. Dollár, V. Rabaud, and S. Belongie, “Non-isometric manifold
learning: Analysis and an algorithm,” in ICML, June 2007.

[14] T. Hastie, R. Tibshirani, and J. H. Friedman, The Elements of Statis-

tical Learning. Springer, August 2001.
[15] S. T. Roweis and L. K. Saul, “Nonlinear dimensionality reduction by

locally linear embedding.” Science, vol. 290, no. 5500, pp. 2323–2326,
Dec 2000.

[16] J. B. Tenenbaum, V. de Silva, and J. C. Langford, “A global geometric
framework for nonlinear dimensionality reduction.” Science, vol. 290,
no. 5500, pp. 2319–2323, Dec 2000.

[17] J. Nocedal and S. J. Wright, Numerical Optimization, 2nd ed.
Springer, 2006.

2952

