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1 Motivation

Humanoid robots are appealing due to their inherent dex-
terity. However, their potential benefits may only be real-
ized with a correspondingly flexible motion synthesis pro-
cedure. Designing flexible skill representations that also
capture non-trivial dynamics effects over a large domain,
such as in real humanoid robots, has been an open challenge.
This poster presents one such flexible trajectory generation
algorithm that utilizes a geometrical representation of hu-
manoid skills (e.g., walking) - in the form of skill manifolds
[1]. Such manifolds are learnt from demonstration data that
may be obtained from off-line optimization algorithms (or
a human expert). This model may be used to produce ap-
proximately optimal motion plans (that capture constraints
and dynamics implicit in the output of a computationally ex-
pensive off-line optimization procedure) as geodesics over a
manifold and this allows us to effectively generalize from a
limited training set. We demonstrate the effectiveness of our
approach on a physical 19-DoF humanoid robot, exhibiting
fast motion planning on a realistic – variable step length,
width and height – walking task.

2 Implementation

Central to our approach is a nonlinear manifold learning
method that is able to capture the geometrical properties
of the intrinsic low-dimensional manifold that training data
points are generated from. Our learning algorithm is a mod-
ification of LSML by Dollar et al. [2], which we have
adapted with robot motion-specific issues in mind. Formally
our goal is to learn a model of the tangent space of the low-
dimensional nonlinear manifold, conditioned on the adja-
cency relations of the high dimensional data. The learnt
manifold yields geodesic distances, projections of points
on the manifold and allows us to directly generate optimal
geodesic paths between points. Our approach captures the
continuum of solutions both inside and outside (within a
neighbourhood) the support of the original data. We demon-
strate that such paths are approximately optimal with respect
to the initial – ground truth – optimality criteria and planning
is suitably fast.

3 Experimental Setup

We have used theKHR-1HV (Fig. 1(c)), a 19 DoF humanoid
robot. We focus on the task of walking, with the aim of gen-

erating a motion synthesis strategy that allows for full cover-
age of a reasonably large interval in step length, height and
width. For generating demonstration data we have framed
the redundancy resolution strategy as an unconstrained non-
linear optimization problem. We have used a Quasi-Newton
approach with a cubic line search procedure, that uses the
BFGS formula for iteratively updating the estimate of the
Hessian of the objective (cost) function. The cost function
we have defined is a mixture of task constraints and stabil-
ity constraints. We have separated each footstep to a swing
phase and a weight shift phase. This way we have divided
learning into two components, a leg swing manifold and
support weight shift manifold, as the measure of optimality
is essentially different for each phase.

4 Results

The learnt manifolds are able to produce smooth walking
trajectories that satisfy the optimization criteria used to pro-
duce the training data. Specifically, the averageRMSE of
the leg swing manifold was as low as 0.12 while the aver-
ageRMSE of the weight shift manifold ranged on average
near 0.06 (Fig. 1(e)). The procedure was able to produce
stable walking in the continuum of the reaching space of
the robot as depicted in Fig. 1(a) and 1(d) for right and left
swings accordingly. A random walk entirely generated with
our method is depicted in Fig. 1(f). Notice that the step
lengths are varying and the step points are variable as well
with respect to thex axis. Snapshots of this walk executed by
the robot are shown in Fig. 2. We demonstrate how a mani-
fold learning algorithm can capture the geometric properties
of a low-dimensional skill-specific manifold, that underlies
a high dimensional dataset, and how totightly integrate this
with the process of trajectory generation. This model can
be naturally used to generate joint space trajectories thatre-
flect the optimality and constraints inherent in the training
data, thus producing novel approximately optimal solutions
to continuous path planning queries efficiently.
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(a) Generated left steps
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(f) Generated random walk

Figure 1: Experimental results with the humanoid robot (c). Random start and endpoint trajectories for left (d) and right (a) leg swings
that have been generated from our learnt manifold, via geodesic path optimization. (b) absolute time needed for planning and
optimization with our method and the nonlinear optimization method (y axis in logscale). (e)RMSE of generated data against
ground truth. (f) Random walk generated by geodesic path optimization onthe learnt manifolds for randomized task-space goals.
Snapshots of the robot executing the motion in Fig. 2.

Figure 2: Stills of the robot executing the planned motion depicted inFig. 1(f).


